Cumulative score process residuals for Cox PH regression p-values based on Lin, Wei, Ying resampling.

# S3 method for phreg
gof(object, n.sim = 1000, silent = 1, robust = NULL, ...)

Arguments

object

is phreg object

n.sim

number of simulations for score processes

silent

to show timing estimate will be produced for longer jobs

robust

to control wether robust dM_i(t) or dN_i are used for simulations

...

Additional arguments to lower level funtions

Author

Thomas Scheike and Klaus K. Holst

Examples

library(mets)
data(sTRACE)

m1 <- phreg(Surv(time,status==9)~vf+chf+diabetes,data=sTRACE) 
gg <- gof(m1)
gg
#> Cumulative score process test for Proportionality:
#>          Sup|U(t)|  pval
#> vf        7.276731 0.014
#> chf       8.971263 0.075
#> diabetes  3.044404 0.796
par(mfrow=c(1,3))
plot(gg)


m1 <- phreg(Surv(time,status==9)~strata(vf)+chf+diabetes,data=sTRACE) 
## to get Martingale ~ dN based simulations
gg <- gof(m1)
gg
#> Cumulative score process test for Proportionality:
#>          Sup|U(t)|  pval
#> chf       8.036132 0.149
#> diabetes  3.441389 0.665

## to get Martingale robust simulations, specify cluster in  call 
sTRACE$id <- 1:500
m1 <- phreg(Surv(time,status==9)~vf+chf+diabetes+cluster(id),data=sTRACE) 
gg <- gof(m1)
gg
#> Cumulative score process test for Proportionality:
#>          Sup|U(t)|  pval
#> vf        7.276731 0.004
#> chf       8.971263 0.074
#> diabetes  3.044404 0.806

m1 <- phreg(Surv(time,status==9)~strata(vf)+chf+diabetes+cluster(id),data=sTRACE) 
gg <- gof(m1)
gg
#> Cumulative score process test for Proportionality:
#>          Sup|U(t)|  pval
#> chf       8.036132 0.147
#> diabetes  3.441389 0.664