Fast Cox PH regression Robust variance is default variance with the summary.
phreg(formula, data, offset = NULL, weights = NULL, ...)
formula with 'Surv' outcome (see coxph
)
data frame
offsets for cox model
weights for Cox score equations
Additional arguments to lower level funtions
influence functions (iid) will follow numerical order of given cluster variable so ordering after $id will give iid in order of data-set.
data(TRACE)
dcut(TRACE) <- ~.
out1 <- phreg(Surv(time,status==9)~vf+chf+strata(wmicat.4),data=TRACE)
out2 <- phreg(Event(time,status)~vf+chf+strata(wmicat.4),data=TRACE)
## tracesim <- timereg::sim.cox(out1,1000)
## sout1 <- phreg(Surv(time,status==1)~vf+chf+strata(wmicat.4),data=tracesim)
## robust standard errors default
summary(out1)
#>
#> n events
#> 1878 958
#> coeffients:
#> Estimate S.E. dU^-1/2 P-value
#> vf 0.452306 0.136473 0.111038 9e-04
#> chf 0.931822 0.074226 0.074650 0e+00
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> vf 1.5719 1.2030 2.0540
#> chf 2.5391 2.1954 2.9367
#>
#>
out1 <- phreg(Surv(time,status!=0)~vf+chf+strata(wmicat.4),data=TRACE)
summary(out2)
#>
#> n events
#> 1878 970
#> coeffients:
#> Estimate S.E. dU^-1/2 P-value
#> vf 0.455201 0.135555 0.110436 8e-04
#> chf 0.903063 0.073354 0.073780 0e+00
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> vf 1.5765 1.2087 2.0563
#> chf 2.4671 2.1368 2.8486
#>
#>
par(mfrow=c(1,2))
bplot(out1)
## bplot(sout1,se=TRUE)
## computing robust variance for baseline
rob1 <- robust.phreg(out1)
bplot(rob1,se=TRUE,robust=TRUE)
## making iid decomposition of regression parameters
betaiiid <- lava::iid(out1)
## making iid decomposition of baseline at a specific time-point
Aiiid <- mets:::IIDbaseline.phreg(out1,time=30)