
Average treatment effect (ATE) for Competing risks and binary outcomes
Klaus Holst & Thomas Scheike
2026-01-14
Source:vignettes/binreg-ate.Rmd
binreg-ate.RmdThe binregATE function can fit a logistic link model with IPCW adjustment for a specific time-point, and can thus be used for describing survival or competing risks data. The function can be used for large data and is completely scalable, that is, linear in the data. A nice feature is that influcence functions are computed and are available.
In addition and to summarize
- the censoring weights can be strata dependent
- predictions can be computed with standard errors
- computation time is linear in data
- including standard errors
- clusters can be given and then cluster corrected standard errors are computed
Average treatment effect
First we simulate some data that mimics that of Kumar et al 2012. This is data from multiple myeloma patients treated with allogeneic stem cell transplantation from the Center for International Blood and Marrow Transplant Research (CIBMTR) Kumar et al (2012), “Trends in allogeneic stem cell transplantation for multiple myeloma: a CIBMTR analysis”. The data used in this paper consist of patients transplanted from 1995 to 2005, and we compared the outcomes between transplant periods: 2001-2005 (N=488) versus 1995-2000 (N=375). The two competing events were relapse (cause 2) and treatment-related mortality (TRM, cause 1) defined as death without relapse. considered the following risk covariates: transplant time period (gp (main interest of the study): 1 for transplanted in 2001-2005 versus 0 for transplanted in 1995-2000), donor type (dnr: 1 for Unrelated or other related donor (N=280) versus 0 for HLA-identical sibling (N=584)), prior autologous transplant (preauto: 1 for Auto+Allo transplant (N=399) versus 0 for allogeneic transplant alone (N=465)) and time to transplant (ttt24: 1 for more than 24 months (N=289) versus 0 for less than or equal to 24 months (N=575))).
We here generate similar data by assuming that the two cumlative incidence curves are logistic and we have censoring that depends on the covariates via a Cox model. All this is wrapped in the kumarsim function. The simulation does not deal with possible violations of the bound that . But as we increase the sample size we still see that we recover the parameters of cause 2.
library(mets)
set.seed(100)
###
n <- 400
kumar <- kumarsim(n,depcens=1)
kumar$cause <- kumar$status
kumar$ttt24 <- kumar[,6]
dtable(kumar,~cause)
#>
#> cause
#> 0 1 2
#> 182 72 146
dfactor(kumar) <- gp.f~gp
kumar$id <- 1:n
kumar$idc <- sample(100,n,TRUE)
kumar$ids <- sample(n,n)
kumar$id2 <- sample(n,n)
kumar2 <- kumar[order(kumar$id2),]
kumar$int <- interaction(kumar$gp,kumar$dnr)
kumar2$int <- interaction(kumar2$gp,kumar2$dnr)
clust <- 0
b2 <- binregATE(Event(time,cause)~gp.f+dnr+preauto+ttt24,kumar,cause=2,
treat.model=gp.f~dnr+preauto+ttt24,time=40,cens.model=~strata(gp,dnr))
summary(b2)
#> n events
#> 400 137
#>
#> 400 clusters
#> coeffients:
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -1.310227 0.221121 -1.743616 -0.876838 0.0000
#> gp.f1 0.898030 0.271691 0.365526 1.430535 0.0009
#> dnr 0.323059 0.271545 -0.209160 0.855278 0.2342
#> preauto 0.269177 0.278181 -0.276049 0.814402 0.3332
#> ttt24 0.496202 0.276045 -0.044836 1.037240 0.0722
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> (Intercept) 0.26976 0.17489 0.4161
#> gp.f1 2.45476 1.44127 4.1809
#> dnr 1.38135 0.81127 2.3520
#> preauto 1.30889 0.75878 2.2578
#> ttt24 1.64247 0.95615 2.8214
#>
#> Average Treatment effects (G-formula) :
#> Estimate Std.Err 2.5% 97.5% P-value
#> treat0 0.293021 0.039148 0.216292 0.369750 0e+00
#> treat1 0.496481 0.041744 0.414665 0.578297 0e+00
#> treat:1-0 0.203460 0.060294 0.085285 0.321635 7e-04
#>
#> Average Treatment effects (double robust) :
#> Estimate Std.Err 2.5% 97.5% P-value
#> treat0 0.311984 0.042914 0.227875 0.396094 0e+00
#> treat1 0.512310 0.042454 0.429103 0.595518 0e+00
#> treat:1-0 0.200326 0.060585 0.081582 0.319070 9e-04
b5 <- binregATE(Event(time,cause)~int+preauto+ttt24,kumar,cause=2,
treat.model=int~preauto+ttt24,cens.code=0,time=60)
summary(b5)
#> n events
#> 400 142
#>
#> 400 clusters
#> coeffients:
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -1.115768 0.285147 -1.674646 -0.556890 0.0001
#> int1.0 0.674582 0.333967 0.020018 1.329146 0.0434
#> int0.1 0.034751 0.494229 -0.933920 1.003421 0.9439
#> int1.1 1.340278 0.431989 0.493594 2.186961 0.0019
#> preauto 0.298967 0.272324 -0.234779 0.832713 0.2723
#> ttt24 0.476755 0.286955 -0.085667 1.039177 0.0966
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> (Intercept) 0.32766 0.18737 0.5730
#> int1.0 1.96321 1.02022 3.7778
#> int0.1 1.03536 0.39301 2.7276
#> int1.1 3.82010 1.63819 8.9081
#> preauto 1.34846 0.79075 2.2995
#> ttt24 1.61084 0.91790 2.8269
#>
#> Average Treatment effects (G-formula) :
#> Estimate Std.Err 2.5% 97.5% P-value
#> treat0.0 0.3124362 0.0586931 0.1973999 0.4274724 0.0000
#> treat1.0 0.4676985 0.0422018 0.3849846 0.5504125 0.0000
#> treat0.1 0.3197899 0.0896402 0.1440983 0.4954815 0.0004
#> treat1.1 0.6274521 0.0726051 0.4851488 0.7697554 0.0000
#> treat:1.0-0.0 0.1552624 0.0738341 0.0105502 0.2999745 0.0355
#> treat:0.1-0.0 0.0073537 0.1048541 -0.1981565 0.2128640 0.9441
#> treat:1.1-0.0 0.3150160 0.0978046 0.1233225 0.5067094 0.0013
#> treat:0.1-1.0 -0.1479086 0.1003040 -0.3445009 0.0486837 0.1403
#> treat:1.1-1.0 0.1597536 0.0845518 -0.0059649 0.3254721 0.0588
#> treat:1.1-0.1 0.3076622 0.1178093 0.0767602 0.5385643 0.0090
#>
#> Average Treatment effects (double robust) :
#> Estimate Std.Err 2.5% 97.5% P-value
#> treat0.0 0.3580588 0.0674640 0.2258318 0.4902858 0.0000
#> treat1.0 0.4871368 0.0501492 0.3888461 0.5854274 0.0000
#> treat0.1 0.3102783 0.1210473 0.0730299 0.5475266 0.0104
#> treat1.1 0.7645588 0.1887893 0.3945387 1.1345790 0.0001
#> treat:1.0-0.0 0.1290779 0.0831680 -0.0339284 0.2920843 0.1207
#> treat:0.1-0.0 -0.0477806 0.1400295 -0.3222333 0.2266722 0.7329
#> treat:1.1-0.0 0.4065000 0.2040550 0.0065596 0.8064404 0.0464
#> treat:0.1-1.0 -0.1768585 0.1315359 -0.4346641 0.0809471 0.1788
#> treat:1.1-1.0 0.2774221 0.1937486 -0.1023182 0.6571624 0.1522
#> treat:1.1-0.1 0.4542806 0.2102654 0.0421680 0.8663931 0.0307We note that the estimates found using the large censoring model are very different from those using the simple Kaplan-Meier weights that are severely biased for these data. This is due to a strong censoring dependence.
The average treatment is around at time 60 for the transplant period, under the standard causal assumptions. The 1/0 treatment variable used for the causal computation is found as the right hand side (rhs) of the treat.model or as the first argument on the rhs of the response model.
The binregATE default uses binreg with its default to fit the working model and is recommended, but the logitIPCW and logitIPCWATE can also be used and are GLM-type IPCW weighted models (see binreg help page/vignette).
ib2 <- logitIPCWATE(Event(time,cause)~gp.f+dnr+preauto+ttt24,kumar,cause=2,
treat.model=gp.f~dnr+preauto+ttt24,time=40,cens.model=~strata(gp,dnr))
summary(ib2)
#> n events
#> 400 137
#>
#> 400 clusters
#> coeffients:
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -1.27557 0.21917 -1.70514 -0.84601 0.0000
#> gp.f1 0.83337 0.25904 0.32566 1.34108 0.0013
#> dnr 0.36815 0.27656 -0.17390 0.91020 0.1831
#> preauto 0.48521 0.30772 -0.11791 1.08832 0.1148
#> ttt24 0.18958 0.30947 -0.41698 0.79614 0.5401
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> (Intercept) 0.27927 0.18175 0.4291
#> gp.f1 2.30105 1.38494 3.8232
#> dnr 1.44506 0.84038 2.4848
#> preauto 1.62452 0.88878 2.9693
#> ttt24 1.20874 0.65904 2.2170
#>
#> Average Treatment effects (G-formula) :
#> Estimate Std.Err 2.5% 97.5% P-value
#> treat-1 0.493059 0.040018 0.414625 0.571494 0.0000
#> treat-0 0.302695 0.040274 0.223759 0.381632 0.0000
#> p1 0.190364 0.058248 0.076200 0.304527 0.0011
#>
#> Average Treatment effects (double robust) :
#> Estimate Std.Err 2.5% 97.5% P-value
#> treat-1 0.524459 0.043164 0.439860 0.609058 0e+00
#> treat-0 0.309211 0.043507 0.223938 0.394483 0e+00
#> p1 0.215248 0.061268 0.095165 0.335331 4e-04
ib5 <- logitIPCW(Event(time,cause)~gp.f+dnr+preauto+ttt24,kumar,cause=2,cens.code=0,
time=60,cens.model=~strata(gp,dnr))
summary(ib5)
#> n events
#> 400 142
#>
#> 400 clusters
#> coeffients:
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -1.142446 0.225267 -1.583960 -0.700931 0.0000
#> gp.f1 0.716372 0.267369 0.192339 1.240405 0.0074
#> dnr 0.551548 0.325499 -0.086418 1.189515 0.0902
#> preauto 0.748078 0.343802 0.074239 1.421917 0.0296
#> ttt24 -0.184844 0.373708 -0.917298 0.547610 0.6209
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> (Intercept) 0.31904 0.20516 0.4961
#> gp.f1 2.04699 1.21208 3.4570
#> dnr 1.73594 0.91721 3.2855
#> preauto 2.11294 1.07706 4.1451
#> ttt24 0.83123 0.39960 1.7291
ibs <- logitIPCW(Event(time,cause)~gp.f+dnr+preauto+ttt24,kumar,cause=2,cens.code=0,time=60)
summary(ibs)
#> n events
#> 400 142
#>
#> 400 clusters
#> coeffients:
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -1.294250 0.220215 -1.725864 -0.862636 0.0000
#> gp.f1 1.633772 0.294651 1.056267 2.211277 0.0000
#> dnr 0.020551 0.309235 -0.585538 0.626639 0.9470
#> preauto 0.547275 0.305442 -0.051381 1.145931 0.0732
#> ttt24 0.288357 0.309124 -0.317515 0.894228 0.3509
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> (Intercept) 0.27410 0.17802 0.4220
#> gp.f1 5.12316 2.87562 9.1274
#> dnr 1.02076 0.55681 1.8713
#> preauto 1.72854 0.94992 3.1454
#> ttt24 1.33423 0.72796 2.4454
check <- 0
if (check==1) {
require(riskRegression)
e.wglm <- wglm( regressor.event=~gp.f+dnr+preauto+ttt24, formula.censor = Surv(time,cause==0)~+1, times = 60, data = kumar, product.limit=TRUE,cause=2)
summary(e.wglm)$coef
estimate(ibs)
es.wglm <- wglm( regressor.event=~gp.f+dnr+preauto+ttt24,
formula.censor = Surv(time,cause==0)~strata(gp,dnr), times = 60,
data = kumar, product.limit=TRUE,cause=2)
summary(es.wglm)$coef
estimate(ib5)
}The cluster argument should not be used for the logitIPCWATE, but works for binregATE.
Average treatment for Competing risks data
The binreg function does direct binomial regression for one time-point, , fitting the model for possible right censored data. The estimation procedure is based on IPCW adjusted estimating equation (EE) where , the censoring survival distribution, and with the indicator of being uncensored at time .
The function logitIPCW instead considers the EE the EE The two score equations are quite similar, and exactly the same when the censoring model is fully-nonparametric given .
- It seems that the binreg estimating equations most often is preferable to use, and the estimating equation used is also augmented in the default implementation (see the binreg vignette).
Additional functions logitATE, and binregATE computes the average treatment effect. We demonstrate their use below.
The functions binregATE (recommended) and logitATE also works when there is no censoring and we thus have simple binary outcome.
Variance is based on sandwich formula with IPCW adjustment, and naive.var is variance under a known censoring model. The influence functions are stored in the output. Further, the standard errors can be cluster corrected by specifying the relevant cluster for the working outcome model.
- We estimate the average treatment effect of our binary response
- Using a working logistic model for the resonse (possibly with a cluster specification)
- Using a working logistic model for treatment given covariates
- The binregATE can also handle a factor with more than two levels and then uses the mlogit multinomial regression function (of mets).
- Using a working model for censoring given covariates, this must be a stratified Kaplan-Meier.
If there are no censoring then the censoring weights are simply set to 1.
The average treatment effect is using counterfactual outcomes.
We compute the simple G-estimator to estimate the risk .
The DR-estimator instead uses the estimating equations that are double robust wrt
- A working logistic model for the resonse
- A working logistic model for treatment given covariates
This is estimated using the estimator where
- is treatment indicator
- is treatment model
- outcome, that in case of censoring is censoring adjusted
- oucome before censoring.
- is outcome model, using binomial regression.
The standard errors are then based on an iid decomposition using taylor-expansions for the parameters of the treatment-model and the outcome-model, and the censoring probability.
We need that the censoring model is correct, so it can be important to use a sufficiently large censorng model as we also illustrate below.
- The censoring model can be specified by strata (used for phreg
We also compute standard marginalization for average treatment effect (called differenceG) and again standard errors are based on the related influcence functions and are also returned.
For large data where there are more than 2 treatment groups the computations can be memory extensive when there are many covariates due to the multinomial-regression model used for the propensity scores. Otherwise the function (binregATE) will run for large data.
The ATE functions need that the treatment that is given as the first variable on the right hand side of the outcome model is a factor. The variable is also indentified from the left hand side of the treatment model (treat.model), that per default assumes that treatment does not depend on any covariates.
Average treatment effect for binary or continuous responses
In the binary case a binary outcome is specified instead of the survival outcome, and as a consequence no-censoring adjustment is done
- the binary/numeric outcome must be a variable in the data-frame
Running the code (can also use binregATE koding cause without censorings values, so setting cens.code=2, and time large)
kumar$cause2 <- 1*(kumar$cause==2)
b3 <- logitATE(cause2~gp.f+dnr+preauto+ttt24,kumar,treat.model=gp.f~dnr+preauto+ttt24)
summary(b3)
#> n events
#> 400 400
#>
#> 400 clusters
#> coeffients:
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -1.219960 0.200830 -1.613580 -0.826341 0.0000
#> gp.f1 0.387595 0.243738 -0.090123 0.865314 0.1118
#> dnr 0.633992 0.241410 0.160837 1.107147 0.0086
#> preauto 0.139356 0.248680 -0.348049 0.626761 0.5752
#> ttt24 0.449527 0.243475 -0.027675 0.926730 0.0648
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> (Intercept) 0.29524 0.19917 0.4376
#> gp.f1 1.47343 0.91382 2.3758
#> dnr 1.88512 1.17449 3.0257
#> preauto 1.14953 0.70606 1.8715
#> ttt24 1.56757 0.97270 2.5262
#>
#> Average Treatment effects (G-formula) :
#> Estimate Std.Err 2.5% 97.5% P-value
#> treat0 0.316084 0.037954 0.241695 0.390472 0.0000
#> treat1 0.400809 0.033395 0.335356 0.466262 0.0000
#> treat:1-0 0.084726 0.052651 -0.018468 0.187919 0.1076
#>
#> Average Treatment effects (double robust) :
#> Estimate Std.Err 2.5% 97.5% P-value
#> treat0 0.343451 0.042284 0.260577 0.426325 0.0000
#> treat1 0.421615 0.033616 0.355729 0.487500 0.0000
#> treat:1-0 0.078164 0.053961 -0.027599 0.183926 0.1475
###library(targeted)
###b3a <- ate(cause2~gp.f|dnr+preauto+ttt24| dnr+preauto+ttt24,kumar,family=binomial)
###summary(b3a)
## calculate also relative risk
estimate(coef=b3$riskDR,vcov=b3$var.riskDR,f=function(p) p[1]/p[2])
#> Estimate Std.Err 2.5% 97.5% P-value
#> treat0 0.8146 0.1194 0.5807 1.049 8.831e-12Or with continuous response using normal estimating equations
b3 <- normalATE(time~gp.f+dnr+preauto+ttt24,kumar,treat.model=gp.f~dnr+preauto+ttt24)
summary(b3)
#> n events
#> 400 400
#>
#> 400 clusters
#> coeffients:
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) 43.4758 4.0796 35.4800 51.4716 0.0000
#> gp.f1 -27.2211 4.1379 -35.3313 -19.1109 0.0000
#> dnr 2.9485 4.4768 -5.8259 11.7228 0.5101
#> preauto -2.8172 3.6191 -9.9105 4.2760 0.4363
#> ttt24 -1.9787 4.1285 -10.0704 6.1131 0.6318
#>
#>
#> Average Treatment effects (G-formula) :
#> Estimate Std.Err 2.5% 97.5% P-value
#> treat0 42.3170 3.8362 34.7982 49.8357 0
#> treat1 15.0958 1.3284 12.4922 17.6994 0
#> treat:1-0 -27.2211 4.1379 -35.3313 -19.1109 0
#>
#> Average Treatment effects (double robust) :
#> Estimate Std.Err 2.5% 97.5% P-value
#> treat0 42.3200 4.0417 34.3985 50.2415 0
#> treat1 15.1545 1.2580 12.6888 17.6201 0
#> treat:1-0 -27.1655 4.2405 -35.4768 -18.8543 0SessionInfo
sessionInfo()
#> R version 4.5.2 (2025-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.3 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8
#> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8
#> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C
#> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: UTC
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] mets_1.3.9
#>
#> loaded via a namespace (and not attached):
#> [1] cli_3.6.5 knitr_1.51 rlang_1.1.7
#> [4] xfun_0.55 textshaping_1.0.4 jsonlite_2.0.0
#> [7] listenv_0.10.0 future.apply_1.20.1 lava_1.8.2
#> [10] htmltools_0.5.9 ragg_1.5.0 sass_0.4.10
#> [13] rmarkdown_2.30 grid_4.5.2 evaluate_1.0.5
#> [16] jquerylib_0.1.4 fastmap_1.2.0 numDeriv_2016.8-1.1
#> [19] yaml_2.3.12 mvtnorm_1.3-3 lifecycle_1.0.5
#> [22] timereg_2.0.7 compiler_4.5.2 codetools_0.2-20
#> [25] fs_1.6.6 htmlwidgets_1.6.4 Rcpp_1.1.1
#> [28] future_1.68.0 lattice_0.22-7 systemfonts_1.3.1
#> [31] digest_0.6.39 R6_2.6.1 parallelly_1.46.1
#> [34] parallel_4.5.2 splines_4.5.2 Matrix_1.7-4
#> [37] bslib_0.9.0 tools_4.5.2 RcppArmadillo_15.2.3-1
#> [40] globals_0.18.0 survival_3.8-3 pkgdown_2.2.0
#> [43] cachem_1.1.0 desc_1.4.3