RMST

Regression for rmst outcome \(E(T \wedge t | X) = exp(X^T \beta)\) based on IPCW adjustment for censoring, thus solving the estimating equation \[\begin{align*} & X^T [ (T \wedge t) \frac{I(C > T \wedge t)}{G_C(T \wedge t,X)} - exp(X^T \beta) ] = 0 . \end{align*}\] This is done with the resmeanIPCW function. For fully saturated model with full censoring model this is equal to the integrals of the Kaplan-Meier estimators as illustrated below.

We can also compute the integral of the Kaplan-Meier or Cox based survival estimator to get the RMST (with the resmean.phreg function) \[ \int_0^t S(s|X) ds \].

For competing risks the years lost can be computed via cumulative incidence functions (cif.yearslost) or as IPCW estimator since
\[ E( I(\epsilon=1) ( t - T \wedge t ) | X) = \int_0^t F_1(s) ds. \] For fully saturated model with full censoring model these estimators are equivalent as illustrated below.

set.seed(100)

     data(bmt); bmt$time <- bmt$time+runif(nrow(bmt))*0.001
     # E( min(T;t) | X ) = exp( a+b X) with IPCW estimation 
     out <- resmeanIPCW(Event(time,cause!=0)~tcell+platelet+age,bmt,
                     time=50,cens.model=~strata(platelet),model="exp")
     summary(out)
#> 
#>    n events
#>  408    245
#> 
#>  408 clusters
#> coeffients:
#>              Estimate   Std.Err      2.5%     97.5% P-value
#> (Intercept)  3.014348  0.063466  2.889956  3.138740  0.0000
#> tcell        0.106223  0.142443 -0.172960  0.385406  0.4558
#> platelet     0.246994  0.098833  0.053285  0.440704  0.0125
#> age         -0.185946  0.043533 -0.271270 -0.100622  0.0000
#> 
#> exp(coeffients):
#>             Estimate     2.5%   97.5%
#> (Intercept) 20.37580 17.99252 23.0748
#> tcell        1.11207  0.84117  1.4702
#> platelet     1.28017  1.05473  1.5538
#> age          0.83032  0.76241  0.9043
     
      ### same as Kaplan-Meier for full censoring model 
     bmt$int <- with(bmt,strata(tcell,platelet))
     out <- resmeanIPCW(Event(time,cause!=0)~-1+int,bmt,time=30,
                                  cens.model=~strata(platelet,tcell),model="lin")
     estimate(out)
#>                        Estimate Std.Err  2.5% 97.5%   P-value
#> inttcell=0, platelet=0    13.60  0.8316 11.97 15.23 3.826e-60
#> inttcell=0, platelet=1    18.90  1.2696 16.41 21.39 3.999e-50
#> inttcell=1, platelet=0    16.19  2.4061 11.48 20.91 1.705e-11
#> inttcell=1, platelet=1    17.77  2.4536 12.96 22.58 4.461e-13
     out1 <- phreg(Surv(time,cause!=0)~strata(tcell,platelet),data=bmt)
     rm1 <- resmean.phreg(out1,times=30)
     summary(rm1)
#>                     strata times    rmean  se.rmean years.lost
#> tcell=0, platelet=0      0    30 13.60294 0.8315422   16.39706
#> tcell=0, platelet=1      1    30 18.90129 1.2693293   11.09871
#> tcell=1, platelet=0      2    30 16.19119 2.4006192   13.80881
#> tcell=1, platelet=1      3    30 17.76617 2.4421866   12.23383
     
     ## competing risks years-lost for cause 1  
     out <- resmeanIPCW(Event(time,cause)~-1+int,bmt,time=30,cause=1,
                                 cens.model=~strata(platelet,tcell),model="lin")
     estimate(out)
#>                        Estimate Std.Err   2.5%  97.5%   P-value
#> inttcell=0, platelet=0   12.105  0.8508 10.438 13.773 6.162e-46
#> inttcell=0, platelet=1    6.884  1.1741  4.583  9.185 4.536e-09
#> inttcell=1, platelet=0    7.261  2.3533  2.648 11.873 2.033e-03
#> inttcell=1, platelet=1    5.780  2.0925  1.679  9.882 5.737e-03
     ## same as integrated cumulative incidence 
     rmc1 <- cif.yearslost(Event(time,cause)~strata(tcell,platelet),data=bmt,times=30,cause=1)
     summary(rmc1)
#>                     strata times    intF11   intF12 se.intF11 se.intF12
#> tcell=0, platelet=0      0    30 12.105127 4.291933 0.8508102 0.6161447
#> tcell=0, platelet=1      1    30  6.884185 4.214527 1.1741034 0.9056995
#> tcell=1, platelet=0      2    30  7.260772 6.548042 2.3532912 1.9703328
#> tcell=1, platelet=1      3    30  5.780360 6.453473 2.0924927 2.0815028
#>                     total.years.lost
#> tcell=0, platelet=0         16.39706
#> tcell=0, platelet=1         11.09871
#> tcell=1, platelet=0         13.80881
#> tcell=1, platelet=1         12.23383

     ## plotting the years lost for different horizon's and the two causes 
     par(mfrow=c(1,3))
     plot(rm1,years.lost=TRUE,se=1)
     ## cause refers to column of cumhaz for the different causes
     plot(rmc1,cause=1,se=1)
     plot(rmc1,cause=2,se=1)

Average treatment effect

Computes average treatment effect for restricted mean survival and years lost in competing risks situation


 dfactor(bmt) <- tcell~tcell
 bmt$event <- (bmt$cause!=0)*1
 out <- resmeanATE(Event(time,event)~tcell+platelet,data=bmt,time=40,treat.model=tcell~platelet)
 summary(out)
#> 
#>    n events
#>  408    241
#> 
#>  408 clusters
#> coeffients:
#>               Estimate    Std.Err       2.5%      97.5% P-value
#> (Intercept)  2.8637403  0.0756653  2.7154390  3.0120416  0.0000
#> tcell1       0.0185112  0.1981777 -0.3699100  0.4069324  0.9256
#> platelet     0.2753483  0.1452274 -0.0092922  0.5599888  0.0580
#> 
#> exp(coeffients):
#>             Estimate     2.5%   97.5%
#> (Intercept) 17.52696 15.11124 20.3289
#> tcell1       1.01868  0.69080  1.5022
#> platelet     1.31699  0.99075  1.7507
#> 
#> Average Treatment effects (G-formula) :
#>           Estimate  Std.Err     2.5%    97.5% P-value
#> treat0    19.26997  1.05138 17.20931 21.33064  0.0000
#> treat1    19.63001  3.43091 12.90554 26.35447  0.0000
#> treat:1-0  0.36003  3.87963 -7.24391  7.96397  0.9261
#> 
#> Average Treatment effects (double robust) :
#>           Estimate Std.Err    2.5%   97.5% P-value
#> treat0     19.3253  1.0516 17.2642 21.3864  0.0000
#> treat1     21.5622  3.8017 14.1111 29.0133  0.0000
#> treat:1-0   2.2369  4.1991 -5.9932 10.4670  0.5942
 
 out1 <- resmeanATE(Event(time,cause)~tcell+platelet,data=bmt,cause=1,outcome="rmst-cause",
            time=40,treat.model=tcell~platelet)
 summary(out1)
#> 
#>    n events
#>  408    157
#> 
#>  408 clusters
#> coeffients:
#>              Estimate   Std.Err      2.5%     97.5% P-value
#> (Intercept)  2.807099  0.069703  2.670483  2.943715  0.0000
#> tcell1      -0.376884  0.247936 -0.862829  0.109061  0.1285
#> platelet    -0.494384  0.165213 -0.818194 -0.170573  0.0028
#> 
#> exp(coeffients):
#>             Estimate     2.5%   97.5%
#> (Intercept) 16.56180 14.44695 18.9862
#> tcell1       0.68600  0.42197  1.1152
#> platelet     0.60995  0.44123  0.8432
#> 
#> Average Treatment effects (G-formula) :
#>           Estimate  Std.Err     2.5%    97.5% P-value
#> treat0    14.53514  0.95673 12.65999 16.41029  0.0000
#> treat1     9.97105  2.37568  5.31479 14.62730  0.0000
#> treat:1-0 -4.56409  2.57161 -9.60437  0.47618  0.0759
#> 
#> Average Treatment effects (double robust) :
#>              Estimate     Std.Err        2.5%       97.5% P-value
#> treat0     14.5202792   0.9577035  12.6432148  16.3973436  0.0000
#> treat1      9.4567098   2.4051143   4.7427723  14.1706473  0.0001
#> treat:1-0  -5.0635694   2.5856565 -10.1313629   0.0042241  0.0502

 out2 <- resmeanATE(Event(time,cause)~tcell+platelet,data=bmt,cause=2,outcome="rmst-cause",
            time=40,treat.model=tcell~platelet)
 summary(out2)
#> 
#>    n events
#>  408     84
#> 
#>  408 clusters
#> coeffients:
#>               Estimate    Std.Err       2.5%      97.5% P-value
#> (Intercept)  1.8287103  0.1312246  1.5715149  2.0859057  0.0000
#> tcell1       0.4681132  0.2432252 -0.0085996  0.9448259  0.0543
#> platelet    -0.0109542  0.2178062 -0.4378464  0.4159380  0.9599
#> 
#> exp(coeffients):
#>             Estimate    2.5%  97.5%
#> (Intercept)  6.22585 4.81394 8.0519
#> tcell1       1.59698 0.99144 2.5724
#> platelet     0.98911 0.64542 1.5158
#> 
#> Average Treatment effects (G-formula) :
#>           Estimate  Std.Err     2.5%    97.5% P-value
#> treat0     6.20457  0.71391  4.80534  7.60381  0.0000
#> treat1     9.90857  2.10922  5.77458 14.04256  0.0000
#> treat:1-0  3.70399  2.23512 -0.67676  8.08474  0.0975
#> 
#> Average Treatment effects (double robust) :
#>           Estimate  Std.Err     2.5%    97.5% P-value
#> treat0     6.21823  0.71423  4.81836  7.61809  0.0000
#> treat1    10.38475  2.22282  6.02810 14.74140  0.0000
#> treat:1-0  4.16652  2.33621 -0.41237  8.74542  0.0745

SessionInfo

sessionInfo()
#> R version 4.3.2 (2023-10-31)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 22.04.3 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
#> 
#> locale:
#>  [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
#>  [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
#>  [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
#> [10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   
#> 
#> time zone: UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] mets_1.3.4     timereg_2.0.5  survival_3.5-7
#> 
#> loaded via a namespace (and not attached):
#>  [1] Matrix_1.6-1.1      future.apply_1.11.1 jsonlite_1.8.8     
#>  [4] highr_0.10          compiler_4.3.2      Rcpp_1.0.12        
#>  [7] stringr_1.5.1       parallel_4.3.2      jquerylib_0.1.4    
#> [10] globals_0.16.2      splines_4.3.2       systemfonts_1.0.5  
#> [13] textshaping_0.3.7   yaml_2.3.8          fastmap_1.1.1      
#> [16] lattice_0.21-9      R6_2.5.1            knitr_1.45         
#> [19] future_1.33.1       desc_1.4.3          bslib_0.6.1        
#> [22] rlang_1.1.3         cachem_1.0.8        stringi_1.8.3      
#> [25] xfun_0.42           fs_1.6.3            sass_0.4.8         
#> [28] memoise_2.0.1       cli_3.6.2           pkgdown_2.0.7      
#> [31] magrittr_2.0.3      digest_0.6.34       grid_4.3.2         
#> [34] mvtnorm_1.2-4       lifecycle_1.0.4     lava_1.7.3         
#> [37] vctrs_0.6.5         evaluate_0.23       glue_1.7.0         
#> [40] listenv_0.9.1       numDeriv_2016.8-1.1 codetools_0.2-19   
#> [43] ragg_1.2.7          parallelly_1.37.0   rmarkdown_2.25     
#> [46] purrr_1.0.2         tools_4.3.2         htmltools_0.5.7