Under the standard causal assumptions we can estimate the average treatment effect E(Y(1) - Y(0)). We need Consistency, ignorability ( Y(1), Y(0) indep A given X), and positivity.

resmeanATE(formula, data, model = "exp", outcome = c("rmst", "rmtl"), ...)

Arguments

formula

formula with 'Event' outcome

data

data-frame

model

exp ("exp") or identity link ("lin")

outcome

restricted mean time (rmst) or restricted mean time lost (rmtl)

...

Additional arguments to pass to binregATE

Details

The first covariate in the specification of the competing risks regression model must be the treatment effect that is a factor. If the factor has more than two levels then it uses the mlogit for propensity score modelling. We consider the outcome mint(T;tau) or I(epsion==cause1)(t- min(T;t)) that gives years lost due to cause "cause" depending on the number of causes. The default model is the exp(X^ beta) and otherwise a linear model is used.

Estimates the ATE using the the standard binary double robust estimating equations that are IPCW censoring adjusted.

Author

Thomas Scheike

Examples

library(mets); data(bmt); bmt$event <- bmt$cause!=0; dfactor(bmt) <- tcell~tcell
out <- resmeanATE(Event(time,event)~tcell+platelet,data=bmt,time=40,treat.model=tcell~platelet)
summary(out)
#>    n events
#>  408    241
#> 
#>  408 clusters
#> coeffients:
#>              Estimate   Std.Err      2.5%     97.5% P-value
#> (Intercept)  2.852563  0.062496  2.730074  2.975052  0.0000
#> tcell1       0.021286  0.122983 -0.219757  0.262329  0.8626
#> platelet     0.303306  0.090772  0.125396  0.481215  0.0008
#> 
#> exp(coeffients):
#>             Estimate     2.5%  97.5%
#> (Intercept) 17.33214 15.33402 19.591
#> tcell1       1.02151  0.80271  1.300
#> platelet     1.35433  1.13360  1.618
#> 
#> Average Treatment effects (G-formula) :
#>           Estimate  Std.Err     2.5%    97.5% P-value
#> treat0    19.25882  0.95918 17.37887 21.13877  0.0000
#> treat1    19.67316  2.22868 15.30502 24.04129  0.0000
#> treat:1-0  0.41434  2.41151 -4.31213  5.14081  0.8636
#> 
#> Average Treatment effects (double robust) :
#>           Estimate Std.Err    2.5%   97.5% P-value
#> treat0     19.3224  1.0515 17.2614 21.3834  0.0000
#> treat1     21.5582  3.8016 14.1072 29.0091  0.0000
#> treat:1-0   2.2358  4.1989 -5.9940 10.4655  0.5944
#> 
#> 

out1 <- resmeanATE(Event(time,cause)~tcell+platelet,data=bmt,cause=1,time=40,
                   treat.model=tcell~platelet)
summary(out1)
#>    n events
#>  408    157
#> 
#>  408 clusters
#> coeffients:
#>             Estimate  Std.Err     2.5%    97.5% P-value
#> (Intercept)  2.80626  0.06962  2.66981  2.94271  0.0000
#> tcell1      -0.37413  0.24769 -0.85960  0.11133  0.1309
#> platelet    -0.49164  0.16493 -0.81490 -0.16837  0.0029
#> 
#> exp(coeffients):
#>             Estimate     2.5%   97.5%
#> (Intercept) 16.54790 14.43717 18.9672
#> tcell1       0.68788  0.42333  1.1178
#> platelet     0.61162  0.44268  0.8450
#> 
#> Average Treatment effects (G-formula) :
#>           Estimate  Std.Err     2.5%    97.5% P-value
#> treat0    14.53165  0.95705 12.65587 16.40742  0.0000
#> treat1     9.99609  2.37815  5.33499 14.65718  0.0000
#> treat:1-0 -4.53556  2.57515 -9.58276  0.51164  0.0782
#> 
#> Average Treatment effects (double robust) :
#>              Estimate     Std.Err        2.5%       97.5% P-value
#> treat0     14.5200247   0.9576900  12.6429868  16.3970625  0.0000
#> treat1      9.4568371   2.4051437   4.7428421  14.1708321  0.0001
#> treat:1-0  -5.0631876   2.5856762 -10.1310197   0.0046446  0.0502
#> 
#> 

ratioATE(out,out1,h=function(x) log(x))
#> $ratioG
#>          Estimate Std.Err    2.5%    97.5% P-value
#> treat0    -0.2816  0.1075 -0.4924 -0.07093 0.00880
#> treat1    -0.6771  0.3183 -1.3008 -0.05328 0.03339
#> treat0.1  -0.3954  0.3363 -1.0545  0.26370 0.23966
#> treat1.1   0.3954  0.3363 -0.2637  1.05454 0.23966
#> 
#> $ratioDR
#>          Estimate Std.Err    2.5%   97.5%  P-value
#> treat0    -0.2857  0.1097 -0.5008 -0.0707 0.009206
#> treat1    -0.8240  0.3669 -1.5430 -0.1050 0.024695
#> treat0.1  -0.5383  0.3894 -1.3014  0.2249 0.166831
#> treat1.1   0.5383  0.3894 -0.2249  1.3014 0.166831
#>