Under the standard causal assumptions we can estimate the average treatment effect E(Y(1) - Y(0)). We need Consistency, ignorability ( Y(1), Y(0) indep A given X), and positivity.

resmeanATE(
  formula,
  data,
  outcome = c("rmst", "rmst-cause"),
  model = "exp",
  ...
)

Arguments

formula

formula with 'Event' outcome

data

data-frame

outcome

"rmst"=E( min(T, t) | X) , or "rmst-cause"=E( I(epsilon==cause) ( t - mint(T,t)) ) | X)

model

possible exp model for relevant mean model that is exp(X^t beta)

...

Additional arguments to pass to binregATE

Details

The first covariate in the specification of the competing risks regression model must be the treatment effect that is a factor. If the factor has more than two levels then it uses the mlogit for propensity score modelling. We consider the outcome mint(T;tau) or I(epsion==cause1)(t- min(T;t)) that gives years lost due to cause "cause".

Estimates the ATE using the the standard binary double robust estimating equations that are IPCW censoring adjusted.

Author

Thomas Scheike

Examples

library(mets); data(bmt); bmt$event <- bmt$cause!=0; dfactor(bmt) <- tcell~tcell
out <- resmeanATE(Event(time,event)~tcell+platelet,data=bmt,time=40,treat.model=tcell~platelet)
summary(out)
#> 
#>    n events
#>  408    241
#> 
#>  408 clusters
#> coeffients:
#>               Estimate    Std.Err       2.5%      97.5% P-value
#> (Intercept)  2.8636723  0.0756680  2.7153658  3.0119789  0.0000
#> tcell1       0.0184348  0.1981783 -0.3699875  0.4068572  0.9259
#> platelet     0.2754744  0.1452178 -0.0091473  0.5600960  0.0578
#> 
#> exp(coeffients):
#>             Estimate     2.5%   97.5%
#> (Intercept) 17.52577 15.11014 20.3276
#> tcell1       1.01861  0.69074  1.5021
#> platelet     1.31716  0.99089  1.7508
#> 
#> Average Treatment effects (G-formula) :
#>           Estimate  Std.Err     2.5%    97.5% P-value
#> treat0    19.26958  1.05137 17.20893 21.33022  0.0000
#> treat1    19.62810  3.43062 12.90420 26.35201  0.0000
#> treat:1-0  0.35853  3.87931 -7.24479  7.96184  0.9264
#> 
#> Average Treatment effects (double robust) :
#>           Estimate Std.Err    2.5%   97.5% P-value
#> treat0     19.3249  1.0516 17.2638 21.3860  0.0000
#> treat1     21.5607  3.8014 14.1101 29.0114  0.0000
#> treat:1-0   2.2358  4.1989 -5.9938 10.4654  0.5944
#> 
#> 

out1 <- resmeanATE(Event(time,cause)~tcell+platelet,data=bmt,cause=1,outcome="rmst-cause",
                   time=40,treat.model=tcell~platelet)
summary(out1)
#> 
#>    n events
#>  408    157
#> 
#>  408 clusters
#> coeffients:
#>              Estimate   Std.Err      2.5%     97.5% P-value
#> (Intercept)  2.807116  0.069703  2.670500  2.943731  0.0000
#> tcell1      -0.376926  0.247934 -0.862868  0.109016  0.1284
#> platelet    -0.494282  0.165197 -0.818061 -0.170502  0.0028
#> 
#> exp(coeffients):
#>             Estimate     2.5%   97.5%
#> (Intercept) 16.56208 14.44720 18.9866
#> tcell1       0.68597  0.42195  1.1152
#> platelet     0.61001  0.44129  0.8432
#> 
#> Average Treatment effects (G-formula) :
#>           Estimate  Std.Err     2.5%    97.5% P-value
#> treat0    14.53571  0.95674 12.66054 16.41088  0.0000
#> treat1     9.97101  2.37567  5.31478 14.62725  0.0000
#> treat:1-0 -4.56470  2.57160 -9.60494  0.47555  0.0759
#> 
#> Average Treatment effects (double robust) :
#>              Estimate     Std.Err        2.5%       97.5% P-value
#> treat0     14.5208537   0.9577145  12.6437679  16.3979396  0.0000
#> treat1      9.4568371   2.4051437   4.7428421  14.1708321  0.0001
#> treat:1-0  -5.0640166   2.5856852 -10.1318665   0.0038333  0.0502
#> 
#>