Calculates various GOF statistics for model object including global chi-squared test statistic and AIC. Extract model-specific mean and variance structure, residuals and various predicitions.
gof(object, ...)
# S3 method for lvmfit
gof(object, chisq=FALSE, level=0.90, rmsea.threshold=0.05,all=FALSE,...)
moments(x,...)
# S3 method for lvm
moments(x, p, debug=FALSE, conditional=FALSE, data=NULL, latent=FALSE, ...)
# S3 method for lvmfit
logLik(object, p=coef(object),
data=model.frame(object),
model=object$estimator,
weights=Weights(object),
data2=object$data$data2,
...)
# S3 method for lvmfit
score(x, data=model.frame(x), p=pars(x), model=x$estimator,
weights=Weights(x), data2=x$data$data2, ...)
# S3 method for lvmfit
information(x,p=pars(x),n=x$data$n,data=model.frame(x),
model=x$estimator,weights=Weights(x), data2=x$data$data2, ...)
Model object
Additional arguments to be passed to the low level functions
Model object
Parameter vector used to calculate statistics
Data.frame to use
If TRUE predictions of latent variables are included in output
Optional second data.frame (only for censored observations)
Optional weight matrix
Number of observations
If TRUE the conditional moments given the covariates are calculated. Otherwise the joint moments are calculated
String defining estimator, e.g. "gaussian" (see
estimate
)
Debugging only
Boolean indicating whether to calculate chi-squared goodness-of-fit (always TRUE for estimator='gaussian')
Level of confidence limits for RMSEA
Which probability to calculate, Pr(RMSEA<rmsea.treshold)
Calculate all (ad hoc) FIT indices: TLI, CFI, NFI, SRMR, ...
A htest
-object.
m <- lvm(list(y~v1+v2+v3+v4,c(v1,v2,v3,v4)~x))
set.seed(1)
dd <- sim(m,1000)
e <- estimate(m, dd)
gof(e,all=TRUE,rmsea.threshold=0.05,level=0.9)
#>
#> Number of observations = 1000
#> BIC = 14585.57
#> AIC = 14468.26
#> log-Likelihood of model = -7216.128
#>
#> log-Likelihood of saturated model = -7212.5
#> Chi-squared statistic: q = 7.254653 , df = 7
#> P(Q>q) = 0.4028559
#>
#> RMSEA (90% CI): 0.006 (0;0.0397)
#> P(RMSEA<0.05)=0.9916145
#> TLI = 0.9998998
#> CFI = 0.9999532
#> NFI = 0.9986715
#> SRMR = 0.008682085
#>
#> rank(Information) = 18 (p=18)
#> condition(Information) = 10.37525
#> mean(score^2) = 4.216767e-09
set.seed(1)
m <- lvm(list(c(y1,y2,y3)~u,y1~x)); latent(m) <- ~u
regression(m,c(y2,y3)~u) <- "b"
d <- sim(m,1000)
e <- estimate(m,d)
rsq(e)
#> $`R-squared`
#> y1 y2 y3 u
#> 6.714238e-01 5.109812e-01 5.276472e-01 7.771561e-16
#>
#> $`Variance explained by 'u'`
#> y1 y2 y3
#> 0.3697894 0.5109812 0.5276472
#>
##'
rr <- rsq(e,TRUE)
rr
#>
#> R-squared:
#>
#> Estimate Std.Err 2.5% 97.5% P-value
#> y1 0.6666507 0.02449714 0.6186372 0.7146642 4.506818e-163
#> y2 0.5062724 0.02751655 0.4523409 0.5602038 1.342309e-75
#> y3 0.5319590 0.02627482 0.4804613 0.5834567 3.855758e-91
estimate(rr,contrast=rbind(c(1,-1,0),c(1,0,-1),c(0,1,-1)))
#> Estimate Std.Err 2.5% 97.5% P-value
#> [y1] - [y2] 0.16038 0.04040 0.08119 0.23956 7.197e-05
#> [y1] - [y3] 0.13469 0.03884 0.05857 0.21081 5.244e-04
#> [y2] - [y3] -0.02569 0.02786 -0.08029 0.02891 3.565e-01
#>
#> Null Hypothesis:
#> [y1] - [y2] = 0
#> [y1] - [y3] = 0
#> [y2] - [y3] = 0
#>
#> chisq = 16.2844, df = 2, p-value = 0.000291