Bivariate Probit model
biprobit(
x,
data,
id,
rho = ~1,
num = NULL,
strata = NULL,
eqmarg = TRUE,
indep = FALSE,
weights = NULL,
weights.fun = function(x) ifelse(any(x <= 0), 0, max(x)),
randomeffect = FALSE,
vcov = "robust",
pairs.only = FALSE,
allmarg = !is.null(weights),
control = list(trace = 0),
messages = 1,
constrain = NULL,
table = pairs.only,
p = NULL,
...
)
formula (or vector)
data.frame
The name of the column in the dataset containing the cluster id-variable.
Formula specifying the regression model for the dependence parameter
Optional name of order variable
Strata
If TRUE same marginals are assumed (exchangeable)
Independence
Weights
Function defining the bivariate weight in each cluster
If TRUE a random effect model is used (otherwise correlation parameter is estimated allowing for both negative and positive dependence)
Type of standard errors to be calculated
Include complete pairs only?
Should all marginal terms be included
Control argument parsed on to the optimization routine. Starting values may be parsed as 'start
'.
Control amount of messages shown
Vector of parameter constraints (NA where free). Use this to set an offset.
Type of estimation procedure
Parameter vector p in which to evaluate log-Likelihood and score function
Optional arguments
data(prt)
prt0 <- subset(prt,country=="Denmark")
a <- biprobit(cancer~1+zyg, ~1+zyg, data=prt0, id="id")
b <- biprobit(cancer~1+zyg, ~1+zyg, data=prt0, id="id",pairs.only=TRUE)
predict(b,newdata=lava::Expand(prt,zyg=c("MZ")))
#> p11 p10 p01 p00 p1 p2 mu1
#> 1 0.005847975 0.01052632 0.01052632 0.9730994 0.01637429 0.01637429 -2.135152
#> mu2 rho parameter zyg
#> 1 -2.135152 0.7568562 1 MZ
predict(b,newdata=lava::Expand(prt,zyg=c("MZ","DZ")))
#> p11 p10 p01 p00 p1 p2 mu1
#> 1 0.005847975 0.01052632 0.01052632 0.9730994 0.01637429 0.01637429 -2.135152
#> 2 0.000655527 0.01425761 0.01425761 0.9708293 0.01491313 0.01491313 -2.172390
#> mu2 rho parameter zyg
#> 1 -2.135152 0.7568562 1 MZ
#> 2 -2.172390 0.1960491 2 DZ
## Reduce Ex.Timings
n <- 2e3
x <- sort(runif(n, -1, 1))
y <- rmvn(n, c(0,0), rho=cbind(tanh(x)))>0
d <- data.frame(y1=y[,1], y2=y[,2], x=x)
dd <- fast.reshape(d)
a <- biprobit(y~1+x,rho=~1+x,data=dd,id="id")
summary(a, mean.contrast=c(1,.5), cor.contrast=c(1,.5))
#>
#> Estimate Std.Err Z p-value
#> (Intercept) -0.019527 0.019359 -1.0087 0.31313
#> x -0.068969 0.031698 -2.1758 0.02957 *
#> r:(Intercept) -0.089362 0.038512 -2.3204 0.02032 *
#> r:x 1.036086 0.071560 14.4785 < 2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> logLik: -2644.232 mean(score^2): 2.228e-05
#> n pairs
#> 4000 2000
#>
#> Contrast:
#> Dependence [(Intercept)] + 0.5[x]
#> Mean [(Intercept)] + 0.5[x]
#>
#> Estimate 2.5% 97.5%
#> Rel.Recur.Risk 1.28859 1.21904 1.35814
#> OR 2.96270 2.29563 3.82361
#> Tetrachoric correlation 0.40422 0.31571 0.48575
#>
#> Concordance 0.29499 0.26887 0.32253
#> Casewise Concordance 0.61654 0.58058 0.65127
#> Marginal 0.47846 0.45557 0.50145
with(predict(a,data.frame(x=seq(-1,1,by=.1))), plot(p00~x,type="l"))
pp <- predict(a,data.frame(x=seq(-1,1,by=.1)),which=c(1))
plot(pp[,1]~pp$x, type="l", xlab="x", ylab="Concordance", lwd=2, xaxs="i")
lava::confband(pp$x,pp[,2],pp[,3],polygon=TRUE,lty=0,col=lava::Col(1))
pp <- predict(a,data.frame(x=seq(-1,1,by=.1)),which=c(9)) ## rho
plot(pp[,1]~pp$x, type="l", xlab="x", ylab="Correlation", lwd=2, xaxs="i")
lava::confband(pp$x,pp[,2],pp[,3],polygon=TRUE,lty=0,col=lava::Col(1))
with(pp, lines(x,tanh(-x),lwd=2,lty=2))
xp <- seq(-1,1,length.out=6); delta <- mean(diff(xp))
a2 <- biprobit(y~1+x,rho=~1+I(cut(x,breaks=xp)),data=dd,id="id")
pp2 <- predict(a2,data.frame(x=xp[-1]-delta/2),which=c(9)) ## rho
lava::confband(pp2$x,pp2[,2],pp2[,3],center=pp2[,1])
## Time
if (FALSE) { # \dontrun{
a <- biprobit.time(cancer~1, rho=~1+zyg, id="id", data=prt, eqmarg=TRUE,
cens.formula=Surv(time,status==0)~1,
breaks=seq(75,100,by=3),fix.censweights=TRUE)
a <- biprobit.time2(cancer~1+zyg, rho=~1+zyg, id="id", data=prt0, eqmarg=TRUE,
cens.formula=Surv(time,status==0)~zyg,
breaks=100)
#a1 <- biprobit.time2(cancer~1, rho=~1, id="id", data=subset(prt0,zyg=="MZ"), eqmarg=TRUE,
# cens.formula=Surv(time,status==0)~1,
# breaks=100,pairs.only=TRUE)
#a2 <- biprobit.time2(cancer~1, rho=~1, id="id", data=subset(prt0,zyg=="DZ"), eqmarg=TRUE,
# cens.formula=Surv(time,status==0)~1,
# breaks=100,pairs.only=TRUE)
} # }