Fast reshape/tranpose of data

fast.reshape(
  data,
  varying,
  id,
  num,
  sep = "",
  keep,
  idname = "id",
  numname = "num",
  factor = FALSE,
  idcombine = TRUE,
  labelnum = FALSE,
  labels,
  regex = mets.options()$regex,
  dropid = FALSE,
  ...
)

Arguments

data

data.frame or matrix

varying

Vector of prefix-names of the time varying variables. Optional for Long->Wide reshaping.

id

id-variable. If omitted then reshape Wide->Long.

num

Optional number/time variable

sep

String seperating prefix-name with number/time

keep

Vector of column names to keep

idname

Name of id-variable (Wide->Long)

numname

Name of number-variable (Wide->Long)

factor

If true all factors are kept (otherwise treated as character)

idcombine

If TRUE and id is vector of several variables, the unique id is combined from all the variables. Otherwise the first variable is only used as identifier.

labelnum

If TRUE varying variables in wide format (going from long->wide) are labeled 1,2,3,... otherwise use 'num' variable. In long-format (going from wide->long) varying variables matching 'varying' prefix are only selected if their postfix is a number.

labels

Optional labels for the number variable

regex

Use regular expressions

dropid

Drop id in long format (default FALSE)

...

Optional additional arguments

Author

Thomas Scheike, Klaus K. Holst

Examples

m <- lava::lvm(c(y1,y2,y3,y4)~x)
d <- lava::sim(m,5)
d
#>            y1         y2         y3          y4           x
#> 1 -0.57557601 -0.3326475 -0.4457970  0.77282675  0.06016044
#> 2 -1.05053922 -0.9088874  0.7541443 -0.66245889 -0.58889449
#> 3  1.96377843  0.2523829  0.3169168  0.49386202  0.53149619
#> 4 -2.16909044 -1.0242058 -1.6979506 -2.20005456 -1.51839408
#> 5  0.09917712  0.1292274  0.2063671 -0.01771241  0.30655786
fast.reshape(d,"y")
#>              x           y id num
#> 1   0.06016044 -0.57557601  1   1
#> 2   0.06016044 -0.33264749  1   2
#> 3   0.06016044 -0.44579702  1   3
#> 4   0.06016044  0.77282675  1   4
#> 5  -0.58889449 -1.05053922  2   1
#> 6  -0.58889449 -0.90888735  2   2
#> 7  -0.58889449  0.75414434  2   3
#> 8  -0.58889449 -0.66245889  2   4
#> 9   0.53149619  1.96377843  3   1
#> 10  0.53149619  0.25238289  3   2
#> 11  0.53149619  0.31691678  3   3
#> 12  0.53149619  0.49386202  3   4
#> 13 -1.51839408 -2.16909044  4   1
#> 14 -1.51839408 -1.02420575  4   2
#> 15 -1.51839408 -1.69795061  4   3
#> 16 -1.51839408 -2.20005456  4   4
#> 17  0.30655786  0.09917712  5   1
#> 18  0.30655786  0.12922738  5   2
#> 19  0.30655786  0.20636712  5   3
#> 20  0.30655786 -0.01771241  5   4
fast.reshape(fast.reshape(d,"y"),id="id")
#>            x1          y1 id num1          x2         y2 num2          x3
#> 1  0.06016044 -0.57557601  1    1  0.06016044 -0.3326475    2  0.06016044
#> 2 -0.58889449 -1.05053922  2    1 -0.58889449 -0.9088874    2 -0.58889449
#> 3  0.53149619  1.96377843  3    1  0.53149619  0.2523829    2  0.53149619
#> 4 -1.51839408 -2.16909044  4    1 -1.51839408 -1.0242058    2 -1.51839408
#> 5  0.30655786  0.09917712  5    1  0.30655786  0.1292274    2  0.30655786
#>           y3 num3          x4          y4 num4
#> 1 -0.4457970    3  0.06016044  0.77282675    4
#> 2  0.7541443    3 -0.58889449 -0.66245889    4
#> 3  0.3169168    3  0.53149619  0.49386202    4
#> 4 -1.6979506    3 -1.51839408 -2.20005456    4
#> 5  0.2063671    3  0.30655786 -0.01771241    4

##### From wide-format
(dd <- fast.reshape(d,"y"))
#>              x           y id num
#> 1   0.06016044 -0.57557601  1   1
#> 2   0.06016044 -0.33264749  1   2
#> 3   0.06016044 -0.44579702  1   3
#> 4   0.06016044  0.77282675  1   4
#> 5  -0.58889449 -1.05053922  2   1
#> 6  -0.58889449 -0.90888735  2   2
#> 7  -0.58889449  0.75414434  2   3
#> 8  -0.58889449 -0.66245889  2   4
#> 9   0.53149619  1.96377843  3   1
#> 10  0.53149619  0.25238289  3   2
#> 11  0.53149619  0.31691678  3   3
#> 12  0.53149619  0.49386202  3   4
#> 13 -1.51839408 -2.16909044  4   1
#> 14 -1.51839408 -1.02420575  4   2
#> 15 -1.51839408 -1.69795061  4   3
#> 16 -1.51839408 -2.20005456  4   4
#> 17  0.30655786  0.09917712  5   1
#> 18  0.30655786  0.12922738  5   2
#> 19  0.30655786  0.20636712  5   3
#> 20  0.30655786 -0.01771241  5   4
## Same with explicit setting new id and number variable/column names
## and seperator "" (default) and dropping x
fast.reshape(d,"y",idname="a",timevar="b",sep="",keep=c())
#>              y a num
#> 1  -0.57557601 1   1
#> 2  -0.33264749 1   2
#> 3  -0.44579702 1   3
#> 4   0.77282675 1   4
#> 5  -1.05053922 2   1
#> 6  -0.90888735 2   2
#> 7   0.75414434 2   3
#> 8  -0.66245889 2   4
#> 9   1.96377843 3   1
#> 10  0.25238289 3   2
#> 11  0.31691678 3   3
#> 12  0.49386202 3   4
#> 13 -2.16909044 4   1
#> 14 -1.02420575 4   2
#> 15 -1.69795061 4   3
#> 16 -2.20005456 4   4
#> 17  0.09917712 5   1
#> 18  0.12922738 5   2
#> 19  0.20636712 5   3
#> 20 -0.01771241 5   4
## Same with 'reshape' list-syntax
fast.reshape(d,list(c("y1","y2","y3","y4")),labelnum=TRUE)
#>              x          y1 id num
#> 1   0.06016044 -0.57557601  1   1
#> 2   0.06016044 -0.33264749  1   2
#> 3   0.06016044 -0.44579702  1   3
#> 4   0.06016044  0.77282675  1   4
#> 5  -0.58889449 -1.05053922  2   1
#> 6  -0.58889449 -0.90888735  2   2
#> 7  -0.58889449  0.75414434  2   3
#> 8  -0.58889449 -0.66245889  2   4
#> 9   0.53149619  1.96377843  3   1
#> 10  0.53149619  0.25238289  3   2
#> 11  0.53149619  0.31691678  3   3
#> 12  0.53149619  0.49386202  3   4
#> 13 -1.51839408 -2.16909044  4   1
#> 14 -1.51839408 -1.02420575  4   2
#> 15 -1.51839408 -1.69795061  4   3
#> 16 -1.51839408 -2.20005456  4   4
#> 17  0.30655786  0.09917712  5   1
#> 18  0.30655786  0.12922738  5   2
#> 19  0.30655786  0.20636712  5   3
#> 20  0.30655786 -0.01771241  5   4

##### From long-format
fast.reshape(dd,id="id")
#>            x1          y1 id num1          x2         y2 num2          x3
#> 1  0.06016044 -0.57557601  1    1  0.06016044 -0.3326475    2  0.06016044
#> 2 -0.58889449 -1.05053922  2    1 -0.58889449 -0.9088874    2 -0.58889449
#> 3  0.53149619  1.96377843  3    1  0.53149619  0.2523829    2  0.53149619
#> 4 -1.51839408 -2.16909044  4    1 -1.51839408 -1.0242058    2 -1.51839408
#> 5  0.30655786  0.09917712  5    1  0.30655786  0.1292274    2  0.30655786
#>           y3 num3          x4          y4 num4
#> 1 -0.4457970    3  0.06016044  0.77282675    4
#> 2  0.7541443    3 -0.58889449 -0.66245889    4
#> 3  0.3169168    3  0.53149619  0.49386202    4
#> 4 -1.6979506    3 -1.51839408 -2.20005456    4
#> 5  0.2063671    3  0.30655786 -0.01771241    4
## Restrict set up within-cluster varying variables
fast.reshape(dd,"y",id="id")
#>             x          y1 id num         y2         y3          y4
#> 1  0.06016044 -0.57557601  1   1 -0.3326475 -0.4457970  0.77282675
#> 2 -0.58889449 -1.05053922  2   1 -0.9088874  0.7541443 -0.66245889
#> 3  0.53149619  1.96377843  3   1  0.2523829  0.3169168  0.49386202
#> 4 -1.51839408 -2.16909044  4   1 -1.0242058 -1.6979506 -2.20005456
#> 5  0.30655786  0.09917712  5   1  0.1292274  0.2063671 -0.01771241
fast.reshape(dd,"y",id="id",keep="x",sep=".")
#>             x         y.1 id        y.2        y.3         y.4
#> 1  0.06016044 -0.57557601  1 -0.3326475 -0.4457970  0.77282675
#> 2 -0.58889449 -1.05053922  2 -0.9088874  0.7541443 -0.66245889
#> 3  0.53149619  1.96377843  3  0.2523829  0.3169168  0.49386202
#> 4 -1.51839408 -2.16909044  4 -1.0242058 -1.6979506 -2.20005456
#> 5  0.30655786  0.09917712  5  0.1292274  0.2063671 -0.01771241

#####
x <- data.frame(id=c(5,5,6,6,7),y=1:5,x=1:5,tv=c(1,2,2,1,2))
x
#>   id y x tv
#> 1  5 1 1  1
#> 2  5 2 2  2
#> 3  6 3 3  2
#> 4  6 4 4  1
#> 5  7 5 5  2
(xw <- fast.reshape(x,id="id"))
#>   id y1 x1 tv1 y2 x2 tv2
#> 1  5  1  1   1  2  2   2
#> 2  6  3  3   2  4  4   1
#> 3  7  5  5   2 NA NA  NA
(xl <- fast.reshape(xw,c("y","x"),idname="id2",keep=c()))
#>    y  x id2 num
#> 1  1  1   1   1
#> 2  2  2   1   2
#> 3  3  3   2   1
#> 4  4  4   2   2
#> 5  5  5   3   1
#> 6 NA NA   3   2
(xl <- fast.reshape(xw,c("y","x","tv")))
#>   id  y  x tv num
#> 1  5  1  1  1   1
#> 2  5  2  2  2   2
#> 3  6  3  3  2   1
#> 4  6  4  4  1   2
#> 5  7  5  5  2   1
#> 6  7 NA NA NA   2
(xw2 <- fast.reshape(xl,id="id",num="num"))
#>   id y1 x1 tv1 y2 x2 tv2
#> 1  5  1  1   1  2  2   2
#> 2  6  3  3   2  4  4   1
#> 3  7  5  5   2 NA NA  NA
fast.reshape(xw2,c("y","x"),idname="id")
#>   id tv1 tv2  y  x num
#> 1  5   1   2  1  1   1
#> 2  5   1   2  2  2   2
#> 3  6   2   1  3  3   1
#> 4  6   2   1  4  4   2
#> 5  7   2  NA  5  5   1
#> 6  7   2  NA NA NA   2

### more generally:
### varying=list(c("ym","yf","yb1","yb2"), c("zm","zf","zb1","zb2"))
### varying=list(c("ym","yf","yb1","yb2")))

##### Family cluster example
d <- mets:::simBinFam(3)
d
#>       agem     agef    ageb1    ageb2 xm xf xb1 xb2 ym yf yb1 yb2 id
#> 1 23.12490 27.68406 13.55082 16.98722  1  1   1   1  1  0   1   0  1
#> 2 24.05690 28.48338 14.53548 15.76694  1  1   0   0  1  1   1   1  2
#> 3 29.96077 31.87501 13.12305 15.21414  1  1   1   0  1  1   1   1  3
fast.reshape(d,var="y")
#>        agem     agef    ageb1    ageb2 xm xf xb1 xb2 id y num
#> 1  23.12490 27.68406 13.55082 16.98722  1  1   1   1  1 1   m
#> 2  23.12490 27.68406 13.55082 16.98722  1  1   1   1  1 0   f
#> 3  23.12490 27.68406 13.55082 16.98722  1  1   1   1  1 1  b1
#> 4  23.12490 27.68406 13.55082 16.98722  1  1   1   1  1 0  b2
#> 5  24.05690 28.48338 14.53548 15.76694  1  1   0   0  2 1   m
#> 6  24.05690 28.48338 14.53548 15.76694  1  1   0   0  2 1   f
#> 7  24.05690 28.48338 14.53548 15.76694  1  1   0   0  2 1  b1
#> 8  24.05690 28.48338 14.53548 15.76694  1  1   0   0  2 1  b2
#> 9  29.96077 31.87501 13.12305 15.21414  1  1   1   0  3 1   m
#> 10 29.96077 31.87501 13.12305 15.21414  1  1   1   0  3 1   f
#> 11 29.96077 31.87501 13.12305 15.21414  1  1   1   0  3 1  b1
#> 12 29.96077 31.87501 13.12305 15.21414  1  1   1   0  3 1  b2
fast.reshape(d,varying=list(c("ym","yf","yb1","yb2")))
#>        agem     agef    ageb1    ageb2 xm xf xb1 xb2 id ym num
#> 1  23.12490 27.68406 13.55082 16.98722  1  1   1   1  1  1  ym
#> 2  23.12490 27.68406 13.55082 16.98722  1  1   1   1  1  0  yf
#> 3  23.12490 27.68406 13.55082 16.98722  1  1   1   1  1  1 yb1
#> 4  23.12490 27.68406 13.55082 16.98722  1  1   1   1  1  0 yb2
#> 5  24.05690 28.48338 14.53548 15.76694  1  1   0   0  2  1  ym
#> 6  24.05690 28.48338 14.53548 15.76694  1  1   0   0  2  1  yf
#> 7  24.05690 28.48338 14.53548 15.76694  1  1   0   0  2  1 yb1
#> 8  24.05690 28.48338 14.53548 15.76694  1  1   0   0  2  1 yb2
#> 9  29.96077 31.87501 13.12305 15.21414  1  1   1   0  3  1  ym
#> 10 29.96077 31.87501 13.12305 15.21414  1  1   1   0  3  1  yf
#> 11 29.96077 31.87501 13.12305 15.21414  1  1   1   0  3  1 yb1
#> 12 29.96077 31.87501 13.12305 15.21414  1  1   1   0  3  1 yb2

d <- lava::sim(lava::lvm(~y1+y2+ya),10)
d
#>             y1         y2         ya
#> 1  -0.14439960  1.0273924 -0.4302118
#> 2   0.20753834  1.2079084 -0.9261095
#> 3   2.30797840 -1.2313234 -0.1771040
#> 4   0.10580237  0.9838956  0.4020118
#> 5   0.45699881  0.2199248 -0.7317482
#> 6  -0.07715294 -1.4672500  0.8303732
#> 7  -0.33400084  0.5210227 -1.2080828
#> 8  -0.03472603 -0.1587546 -1.0479844
#> 9   0.78763961  1.4645873  1.4411577
#> 10  2.07524501 -0.7660820 -1.0158475
(dd <- fast.reshape(d,"y"))
#>              y id num
#> 1  -0.14439960  1   1
#> 2   1.02739244  1   2
#> 3  -0.43021175  1   a
#> 4   0.20753834  2   1
#> 5   1.20790840  2   2
#> 6  -0.92610950  2   a
#> 7   2.30797840  3   1
#> 8  -1.23132342  3   2
#> 9  -0.17710396  3   a
#> 10  0.10580237  4   1
#> 11  0.98389557  4   2
#> 12  0.40201178  4   a
#> 13  0.45699881  5   1
#> 14  0.21992480  5   2
#> 15 -0.73174817  5   a
#> 16 -0.07715294  6   1
#> 17 -1.46725003  6   2
#> 18  0.83037317  6   a
#> 19 -0.33400084  7   1
#> 20  0.52102274  7   2
#> 21 -1.20808279  7   a
#> 22 -0.03472603  8   1
#> 23 -0.15875460  8   2
#> 24 -1.04798441  8   a
#> 25  0.78763961  9   1
#> 26  1.46458731  9   2
#> 27  1.44115771  9   a
#> 28  2.07524501 10   1
#> 29 -0.76608200 10   2
#> 30 -1.01584747 10   a
fast.reshape(d,"y",labelnum=TRUE)
#>            ya           y id num
#> 1  -0.4302118 -0.14439960  1   1
#> 2  -0.4302118  1.02739244  1   2
#> 3  -0.9261095  0.20753834  2   1
#> 4  -0.9261095  1.20790840  2   2
#> 5  -0.1771040  2.30797840  3   1
#> 6  -0.1771040 -1.23132342  3   2
#> 7   0.4020118  0.10580237  4   1
#> 8   0.4020118  0.98389557  4   2
#> 9  -0.7317482  0.45699881  5   1
#> 10 -0.7317482  0.21992480  5   2
#> 11  0.8303732 -0.07715294  6   1
#> 12  0.8303732 -1.46725003  6   2
#> 13 -1.2080828 -0.33400084  7   1
#> 14 -1.2080828  0.52102274  7   2
#> 15 -1.0479844 -0.03472603  8   1
#> 16 -1.0479844 -0.15875460  8   2
#> 17  1.4411577  0.78763961  9   1
#> 18  1.4411577  1.46458731  9   2
#> 19 -1.0158475  2.07524501 10   1
#> 20 -1.0158475 -0.76608200 10   2
fast.reshape(dd,id="id",num="num")
#>             y1 id         y2         ya
#> 1  -0.14439960  1  1.0273924 -0.4302118
#> 2   0.20753834  2  1.2079084 -0.9261095
#> 3   2.30797840  3 -1.2313234 -0.1771040
#> 4   0.10580237  4  0.9838956  0.4020118
#> 5   0.45699881  5  0.2199248 -0.7317482
#> 6  -0.07715294  6 -1.4672500  0.8303732
#> 7  -0.33400084  7  0.5210227 -1.2080828
#> 8  -0.03472603  8 -0.1587546 -1.0479844
#> 9   0.78763961  9  1.4645873  1.4411577
#> 10  2.07524501 10 -0.7660820 -1.0158475
fast.reshape(dd,id="id",num="num",labelnum=TRUE)
#>             y1 id         y2         y3
#> 1  -0.14439960  1  1.0273924 -0.4302118
#> 2   0.20753834  2  1.2079084 -0.9261095
#> 3   2.30797840  3 -1.2313234 -0.1771040
#> 4   0.10580237  4  0.9838956  0.4020118
#> 5   0.45699881  5  0.2199248 -0.7317482
#> 6  -0.07715294  6 -1.4672500  0.8303732
#> 7  -0.33400084  7  0.5210227 -1.2080828
#> 8  -0.03472603  8 -0.1587546 -1.0479844
#> 9   0.78763961  9  1.4645873  1.4411577
#> 10  2.07524501 10 -0.7660820 -1.0158475
fast.reshape(d,c(a="y"),labelnum=TRUE) ## New column name
#>            ya           a id num
#> 1  -0.4302118 -0.14439960  1   1
#> 2  -0.4302118  1.02739244  1   2
#> 3  -0.9261095  0.20753834  2   1
#> 4  -0.9261095  1.20790840  2   2
#> 5  -0.1771040  2.30797840  3   1
#> 6  -0.1771040 -1.23132342  3   2
#> 7   0.4020118  0.10580237  4   1
#> 8   0.4020118  0.98389557  4   2
#> 9  -0.7317482  0.45699881  5   1
#> 10 -0.7317482  0.21992480  5   2
#> 11  0.8303732 -0.07715294  6   1
#> 12  0.8303732 -1.46725003  6   2
#> 13 -1.2080828 -0.33400084  7   1
#> 14 -1.2080828  0.52102274  7   2
#> 15 -1.0479844 -0.03472603  8   1
#> 16 -1.0479844 -0.15875460  8   2
#> 17  1.4411577  0.78763961  9   1
#> 18  1.4411577  1.46458731  9   2
#> 19 -1.0158475  2.07524501 10   1
#> 20 -1.0158475 -0.76608200 10   2


##### Unbalanced data
m <- lava::lvm(c(y1,y2,y3,y4)~ x+z1+z3+z5)
d <- lava::sim(m,3)
d
#>          y1           y2         y3        y4          x         z1         z3
#> 1 -1.476059 -0.199160129 -4.1732690 -1.346706 -0.1643758 -1.3702079 -0.3087406
#> 2 -1.959051  0.008613182  0.9196863 -1.591375  0.4206946  0.9878383 -1.2532898
#> 3  2.173273  1.432963646  2.4309376  2.273980 -0.4002467  1.5197450  0.6422413
#>            z5
#> 1 -0.04470914
#> 2 -1.73321841
#> 3  0.00213186
fast.reshape(d,c("y","z"))
#>             x            y           z id num
#> 1  -0.1643758 -1.476058703 -1.37020788  1   1
#> 2  -0.1643758 -0.199160129          NA  1   2
#> 3  -0.1643758 -4.173268951 -0.30874057  1   3
#> 4  -0.1643758 -1.346706079          NA  1   4
#> 5  -0.1643758           NA -0.04470914  1   5
#> 6   0.4206946 -1.959051303  0.98783827  2   1
#> 7   0.4206946  0.008613182          NA  2   2
#> 8   0.4206946  0.919686338 -1.25328976  2   3
#> 9   0.4206946 -1.591374775          NA  2   4
#> 10  0.4206946           NA -1.73321841  2   5
#> 11 -0.4002467  2.173273287  1.51974503  3   1
#> 12 -0.4002467  1.432963646          NA  3   2
#> 13 -0.4002467  2.430937614  0.64224131  3   3
#> 14 -0.4002467  2.273979870          NA  3   4
#> 15 -0.4002467           NA  0.00213186  3   5

##### not-varying syntax:
fast.reshape(d,-c("x"))
#>             x            y           z id num
#> 1  -0.1643758 -1.476058703 -1.37020788  1   1
#> 2  -0.1643758 -0.199160129          NA  1   2
#> 3  -0.1643758 -4.173268951 -0.30874057  1   3
#> 4  -0.1643758 -1.346706079          NA  1   4
#> 5  -0.1643758           NA -0.04470914  1   5
#> 6   0.4206946 -1.959051303  0.98783827  2   1
#> 7   0.4206946  0.008613182          NA  2   2
#> 8   0.4206946  0.919686338 -1.25328976  2   3
#> 9   0.4206946 -1.591374775          NA  2   4
#> 10  0.4206946           NA -1.73321841  2   5
#> 11 -0.4002467  2.173273287  1.51974503  3   1
#> 12 -0.4002467  1.432963646          NA  3   2
#> 13 -0.4002467  2.430937614  0.64224131  3   3
#> 14 -0.4002467  2.273979870          NA  3   4
#> 15 -0.4002467           NA  0.00213186  3   5

##### Automatically define varying variables from trailing digits
fast.reshape(d)
#>             x            y           z id num
#> 1  -0.1643758 -1.476058703 -1.37020788  1   1
#> 2  -0.1643758 -0.199160129          NA  1   2
#> 3  -0.1643758 -4.173268951 -0.30874057  1   3
#> 4  -0.1643758 -1.346706079          NA  1   4
#> 5  -0.1643758           NA -0.04470914  1   5
#> 6   0.4206946 -1.959051303  0.98783827  2   1
#> 7   0.4206946  0.008613182          NA  2   2
#> 8   0.4206946  0.919686338 -1.25328976  2   3
#> 9   0.4206946 -1.591374775          NA  2   4
#> 10  0.4206946           NA -1.73321841  2   5
#> 11 -0.4002467  2.173273287  1.51974503  3   1
#> 12 -0.4002467  1.432963646          NA  3   2
#> 13 -0.4002467  2.430937614  0.64224131  3   3
#> 14 -0.4002467  2.273979870          NA  3   4
#> 15 -0.4002467           NA  0.00213186  3   5

##### Prostate cancer example
data(prt)
head(prtw <- fast.reshape(prt,"cancer",id="id"))
#>    country      time status zyg id cancer1 cancer2
#> 31 Denmark  96.98833      1  DZ  1       0       0
#> 39 Denmark  68.04498      1  DZ  3       0       0
#> 51 Denmark  78.78068      1  DZ  5       0       0
#> 70 Denmark 100.95488      1  MZ  9       0       0
#> 83 Denmark 104.55035      1  DZ 12       0       1
#> 95 Denmark  95.65324      1  DZ 15       0       0
ftable(cancer1~cancer2,data=prtw)
#>         cancer1     0     1
#> cancer2                    
#> 0               13405   349
#> 1                 362   106
rm(prtw)