Fast reshape/tranpose of data

fast.reshape(
  data,
  varying,
  id,
  num,
  sep = "",
  keep,
  idname = "id",
  numname = "num",
  factor = FALSE,
  idcombine = TRUE,
  labelnum = FALSE,
  labels,
  regex = mets.options()$regex,
  dropid = FALSE,
  ...
)

Arguments

data

data.frame or matrix

varying

Vector of prefix-names of the time varying variables. Optional for Long->Wide reshaping.

id

id-variable. If omitted then reshape Wide->Long.

num

Optional number/time variable

sep

String seperating prefix-name with number/time

keep

Vector of column names to keep

idname

Name of id-variable (Wide->Long)

numname

Name of number-variable (Wide->Long)

factor

If true all factors are kept (otherwise treated as character)

idcombine

If TRUE and id is vector of several variables, the unique id is combined from all the variables. Otherwise the first variable is only used as identifier.

labelnum

If TRUE varying variables in wide format (going from long->wide) are labeled 1,2,3,... otherwise use 'num' variable. In long-format (going from wide->long) varying variables matching 'varying' prefix are only selected if their postfix is a number.

labels

Optional labels for the number variable

regex

Use regular expressions

dropid

Drop id in long format (default FALSE)

...

Optional additional arguments

Author

Thomas Scheike, Klaus K. Holst

Examples

m <- lava::lvm(c(y1,y2,y3,y4)~x)
d <- lava::sim(m,5)
d
#>           y1         y2         y3          y4          x
#> 1 -0.5374072  0.1922456  0.7401224 -1.63051519 -0.5426985
#> 2  1.7302578 -0.3315447  0.8675281 -0.08805435  1.0227475
#> 3 -2.8325490 -2.4689011 -1.9752101 -2.23098113 -2.0349834
#> 4 -2.4393909 -0.4825135 -1.9842807 -0.97943066 -0.9102260
#> 5 -2.0478220 -1.2542359 -0.6441103  1.90859645 -1.3167978
fast.reshape(d,"y")
#>             x           y id num
#> 1  -0.5426985 -0.53740716  1   1
#> 2  -0.5426985  0.19224557  1   2
#> 3  -0.5426985  0.74012237  1   3
#> 4  -0.5426985 -1.63051519  1   4
#> 5   1.0227475  1.73025778  2   1
#> 6   1.0227475 -0.33154470  2   2
#> 7   1.0227475  0.86752809  2   3
#> 8   1.0227475 -0.08805435  2   4
#> 9  -2.0349834 -2.83254896  3   1
#> 10 -2.0349834 -2.46890109  3   2
#> 11 -2.0349834 -1.97521005  3   3
#> 12 -2.0349834 -2.23098113  3   4
#> 13 -0.9102260 -2.43939091  4   1
#> 14 -0.9102260 -0.48251354  4   2
#> 15 -0.9102260 -1.98428074  4   3
#> 16 -0.9102260 -0.97943066  4   4
#> 17 -1.3167978 -2.04782202  5   1
#> 18 -1.3167978 -1.25423593  5   2
#> 19 -1.3167978 -0.64411031  5   3
#> 20 -1.3167978  1.90859645  5   4
fast.reshape(fast.reshape(d,"y"),id="id")
#>           x1         y1 id num1         x2         y2 num2         x3
#> 1 -0.5426985 -0.5374072  1    1 -0.5426985  0.1922456    2 -0.5426985
#> 2  1.0227475  1.7302578  2    1  1.0227475 -0.3315447    2  1.0227475
#> 3 -2.0349834 -2.8325490  3    1 -2.0349834 -2.4689011    2 -2.0349834
#> 4 -0.9102260 -2.4393909  4    1 -0.9102260 -0.4825135    2 -0.9102260
#> 5 -1.3167978 -2.0478220  5    1 -1.3167978 -1.2542359    2 -1.3167978
#>           y3 num3         x4          y4 num4
#> 1  0.7401224    3 -0.5426985 -1.63051519    4
#> 2  0.8675281    3  1.0227475 -0.08805435    4
#> 3 -1.9752101    3 -2.0349834 -2.23098113    4
#> 4 -1.9842807    3 -0.9102260 -0.97943066    4
#> 5 -0.6441103    3 -1.3167978  1.90859645    4

##### From wide-format
(dd <- fast.reshape(d,"y"))
#>             x           y id num
#> 1  -0.5426985 -0.53740716  1   1
#> 2  -0.5426985  0.19224557  1   2
#> 3  -0.5426985  0.74012237  1   3
#> 4  -0.5426985 -1.63051519  1   4
#> 5   1.0227475  1.73025778  2   1
#> 6   1.0227475 -0.33154470  2   2
#> 7   1.0227475  0.86752809  2   3
#> 8   1.0227475 -0.08805435  2   4
#> 9  -2.0349834 -2.83254896  3   1
#> 10 -2.0349834 -2.46890109  3   2
#> 11 -2.0349834 -1.97521005  3   3
#> 12 -2.0349834 -2.23098113  3   4
#> 13 -0.9102260 -2.43939091  4   1
#> 14 -0.9102260 -0.48251354  4   2
#> 15 -0.9102260 -1.98428074  4   3
#> 16 -0.9102260 -0.97943066  4   4
#> 17 -1.3167978 -2.04782202  5   1
#> 18 -1.3167978 -1.25423593  5   2
#> 19 -1.3167978 -0.64411031  5   3
#> 20 -1.3167978  1.90859645  5   4
## Same with explicit setting new id and number variable/column names
## and seperator "" (default) and dropping x
fast.reshape(d,"y",idname="a",timevar="b",sep="",keep=c())
#>              y a num
#> 1  -0.53740716 1   1
#> 2   0.19224557 1   2
#> 3   0.74012237 1   3
#> 4  -1.63051519 1   4
#> 5   1.73025778 2   1
#> 6  -0.33154470 2   2
#> 7   0.86752809 2   3
#> 8  -0.08805435 2   4
#> 9  -2.83254896 3   1
#> 10 -2.46890109 3   2
#> 11 -1.97521005 3   3
#> 12 -2.23098113 3   4
#> 13 -2.43939091 4   1
#> 14 -0.48251354 4   2
#> 15 -1.98428074 4   3
#> 16 -0.97943066 4   4
#> 17 -2.04782202 5   1
#> 18 -1.25423593 5   2
#> 19 -0.64411031 5   3
#> 20  1.90859645 5   4
## Same with 'reshape' list-syntax
fast.reshape(d,list(c("y1","y2","y3","y4")),labelnum=TRUE)
#>             x          y1 id num
#> 1  -0.5426985 -0.53740716  1   1
#> 2  -0.5426985  0.19224557  1   2
#> 3  -0.5426985  0.74012237  1   3
#> 4  -0.5426985 -1.63051519  1   4
#> 5   1.0227475  1.73025778  2   1
#> 6   1.0227475 -0.33154470  2   2
#> 7   1.0227475  0.86752809  2   3
#> 8   1.0227475 -0.08805435  2   4
#> 9  -2.0349834 -2.83254896  3   1
#> 10 -2.0349834 -2.46890109  3   2
#> 11 -2.0349834 -1.97521005  3   3
#> 12 -2.0349834 -2.23098113  3   4
#> 13 -0.9102260 -2.43939091  4   1
#> 14 -0.9102260 -0.48251354  4   2
#> 15 -0.9102260 -1.98428074  4   3
#> 16 -0.9102260 -0.97943066  4   4
#> 17 -1.3167978 -2.04782202  5   1
#> 18 -1.3167978 -1.25423593  5   2
#> 19 -1.3167978 -0.64411031  5   3
#> 20 -1.3167978  1.90859645  5   4

##### From long-format
fast.reshape(dd,id="id")
#>           x1         y1 id num1         x2         y2 num2         x3
#> 1 -0.5426985 -0.5374072  1    1 -0.5426985  0.1922456    2 -0.5426985
#> 2  1.0227475  1.7302578  2    1  1.0227475 -0.3315447    2  1.0227475
#> 3 -2.0349834 -2.8325490  3    1 -2.0349834 -2.4689011    2 -2.0349834
#> 4 -0.9102260 -2.4393909  4    1 -0.9102260 -0.4825135    2 -0.9102260
#> 5 -1.3167978 -2.0478220  5    1 -1.3167978 -1.2542359    2 -1.3167978
#>           y3 num3         x4          y4 num4
#> 1  0.7401224    3 -0.5426985 -1.63051519    4
#> 2  0.8675281    3  1.0227475 -0.08805435    4
#> 3 -1.9752101    3 -2.0349834 -2.23098113    4
#> 4 -1.9842807    3 -0.9102260 -0.97943066    4
#> 5 -0.6441103    3 -1.3167978  1.90859645    4
## Restrict set up within-cluster varying variables
fast.reshape(dd,"y",id="id")
#>            x         y1 id num         y2         y3          y4
#> 1 -0.5426985 -0.5374072  1   1  0.1922456  0.7401224 -1.63051519
#> 2  1.0227475  1.7302578  2   1 -0.3315447  0.8675281 -0.08805435
#> 3 -2.0349834 -2.8325490  3   1 -2.4689011 -1.9752101 -2.23098113
#> 4 -0.9102260 -2.4393909  4   1 -0.4825135 -1.9842807 -0.97943066
#> 5 -1.3167978 -2.0478220  5   1 -1.2542359 -0.6441103  1.90859645
fast.reshape(dd,"y",id="id",keep="x",sep=".")
#>            x        y.1 id        y.2        y.3         y.4
#> 1 -0.5426985 -0.5374072  1  0.1922456  0.7401224 -1.63051519
#> 2  1.0227475  1.7302578  2 -0.3315447  0.8675281 -0.08805435
#> 3 -2.0349834 -2.8325490  3 -2.4689011 -1.9752101 -2.23098113
#> 4 -0.9102260 -2.4393909  4 -0.4825135 -1.9842807 -0.97943066
#> 5 -1.3167978 -2.0478220  5 -1.2542359 -0.6441103  1.90859645

#####
x <- data.frame(id=c(5,5,6,6,7),y=1:5,x=1:5,tv=c(1,2,2,1,2))
x
#>   id y x tv
#> 1  5 1 1  1
#> 2  5 2 2  2
#> 3  6 3 3  2
#> 4  6 4 4  1
#> 5  7 5 5  2
(xw <- fast.reshape(x,id="id"))
#>   id y1 x1 tv1 y2 x2 tv2
#> 1  5  1  1   1  2  2   2
#> 2  6  3  3   2  4  4   1
#> 3  7  5  5   2 NA NA  NA
(xl <- fast.reshape(xw,c("y","x"),idname="id2",keep=c()))
#>    y  x id2 num
#> 1  1  1   1   1
#> 2  2  2   1   2
#> 3  3  3   2   1
#> 4  4  4   2   2
#> 5  5  5   3   1
#> 6 NA NA   3   2
(xl <- fast.reshape(xw,c("y","x","tv")))
#>   id  y  x tv num
#> 1  5  1  1  1   1
#> 2  5  2  2  2   2
#> 3  6  3  3  2   1
#> 4  6  4  4  1   2
#> 5  7  5  5  2   1
#> 6  7 NA NA NA   2
(xw2 <- fast.reshape(xl,id="id",num="num"))
#>   id y1 x1 tv1 y2 x2 tv2
#> 1  5  1  1   1  2  2   2
#> 2  6  3  3   2  4  4   1
#> 3  7  5  5   2 NA NA  NA
fast.reshape(xw2,c("y","x"),idname="id")
#>   id tv1 tv2  y  x num
#> 1  5   1   2  1  1   1
#> 2  5   1   2  2  2   2
#> 3  6   2   1  3  3   1
#> 4  6   2   1  4  4   2
#> 5  7   2  NA  5  5   1
#> 6  7   2  NA NA NA   2

### more generally:
### varying=list(c("ym","yf","yb1","yb2"), c("zm","zf","zb1","zb2"))
### varying=list(c("ym","yf","yb1","yb2")))

##### Family cluster example
d <- mets:::simBinFam(3)
d
#>       agem     agef     ageb1     ageb2 xm xf xb1 xb2 ym yf yb1 yb2 id
#> 1 22.98577 23.76125 13.616006 14.639229  1  1   0   1  1  0   1   1  1
#> 2 28.99852 30.10294 12.997223 14.579985  1  1   1   1  1  1   0   1  2
#> 3 24.21654 24.58906  5.714862  9.377642  1  1   1   1  1  1   1   1  3
fast.reshape(d,var="y")
#>        agem     agef     ageb1     ageb2 xm xf xb1 xb2 id y num
#> 1  22.98577 23.76125 13.616006 14.639229  1  1   0   1  1 1   m
#> 2  22.98577 23.76125 13.616006 14.639229  1  1   0   1  1 0   f
#> 3  22.98577 23.76125 13.616006 14.639229  1  1   0   1  1 1  b1
#> 4  22.98577 23.76125 13.616006 14.639229  1  1   0   1  1 1  b2
#> 5  28.99852 30.10294 12.997223 14.579985  1  1   1   1  2 1   m
#> 6  28.99852 30.10294 12.997223 14.579985  1  1   1   1  2 1   f
#> 7  28.99852 30.10294 12.997223 14.579985  1  1   1   1  2 0  b1
#> 8  28.99852 30.10294 12.997223 14.579985  1  1   1   1  2 1  b2
#> 9  24.21654 24.58906  5.714862  9.377642  1  1   1   1  3 1   m
#> 10 24.21654 24.58906  5.714862  9.377642  1  1   1   1  3 1   f
#> 11 24.21654 24.58906  5.714862  9.377642  1  1   1   1  3 1  b1
#> 12 24.21654 24.58906  5.714862  9.377642  1  1   1   1  3 1  b2
fast.reshape(d,varying=list(c("ym","yf","yb1","yb2")))
#>        agem     agef     ageb1     ageb2 xm xf xb1 xb2 id ym num
#> 1  22.98577 23.76125 13.616006 14.639229  1  1   0   1  1  1  ym
#> 2  22.98577 23.76125 13.616006 14.639229  1  1   0   1  1  0  yf
#> 3  22.98577 23.76125 13.616006 14.639229  1  1   0   1  1  1 yb1
#> 4  22.98577 23.76125 13.616006 14.639229  1  1   0   1  1  1 yb2
#> 5  28.99852 30.10294 12.997223 14.579985  1  1   1   1  2  1  ym
#> 6  28.99852 30.10294 12.997223 14.579985  1  1   1   1  2  1  yf
#> 7  28.99852 30.10294 12.997223 14.579985  1  1   1   1  2  0 yb1
#> 8  28.99852 30.10294 12.997223 14.579985  1  1   1   1  2  1 yb2
#> 9  24.21654 24.58906  5.714862  9.377642  1  1   1   1  3  1  ym
#> 10 24.21654 24.58906  5.714862  9.377642  1  1   1   1  3  1  yf
#> 11 24.21654 24.58906  5.714862  9.377642  1  1   1   1  3  1 yb1
#> 12 24.21654 24.58906  5.714862  9.377642  1  1   1   1  3  1 yb2

d <- lava::sim(lava::lvm(~y1+y2+ya),10)
d
#>             y1          y2          ya
#> 1  -1.07751966  0.07078768 -1.13476510
#> 2  -0.07170647  1.18883471  0.56192682
#> 3  -0.57401916  1.80565141 -0.82203929
#> 4   1.40098363  1.93306531 -0.07828515
#> 5   1.06150176  1.24960078  0.88573012
#> 6   0.65679574 -1.04701236  0.13618075
#> 7   0.51446894 -0.77793889 -0.44504804
#> 8   1.01551576  0.40196448  0.32596145
#> 9  -0.08513675 -0.55204578  0.64049263
#> 10 -1.22095338 -0.12198455  0.57759366
(dd <- fast.reshape(d,"y"))
#>              y id num
#> 1  -1.07751966  1   1
#> 2   0.07078768  1   2
#> 3  -1.13476510  1   a
#> 4  -0.07170647  2   1
#> 5   1.18883471  2   2
#> 6   0.56192682  2   a
#> 7  -0.57401916  3   1
#> 8   1.80565141  3   2
#> 9  -0.82203929  3   a
#> 10  1.40098363  4   1
#> 11  1.93306531  4   2
#> 12 -0.07828515  4   a
#> 13  1.06150176  5   1
#> 14  1.24960078  5   2
#> 15  0.88573012  5   a
#> 16  0.65679574  6   1
#> 17 -1.04701236  6   2
#> 18  0.13618075  6   a
#> 19  0.51446894  7   1
#> 20 -0.77793889  7   2
#> 21 -0.44504804  7   a
#> 22  1.01551576  8   1
#> 23  0.40196448  8   2
#> 24  0.32596145  8   a
#> 25 -0.08513675  9   1
#> 26 -0.55204578  9   2
#> 27  0.64049263  9   a
#> 28 -1.22095338 10   1
#> 29 -0.12198455 10   2
#> 30  0.57759366 10   a
fast.reshape(d,"y",labelnum=TRUE)
#>             ya           y id num
#> 1  -1.13476510 -1.07751966  1   1
#> 2  -1.13476510  0.07078768  1   2
#> 3   0.56192682 -0.07170647  2   1
#> 4   0.56192682  1.18883471  2   2
#> 5  -0.82203929 -0.57401916  3   1
#> 6  -0.82203929  1.80565141  3   2
#> 7  -0.07828515  1.40098363  4   1
#> 8  -0.07828515  1.93306531  4   2
#> 9   0.88573012  1.06150176  5   1
#> 10  0.88573012  1.24960078  5   2
#> 11  0.13618075  0.65679574  6   1
#> 12  0.13618075 -1.04701236  6   2
#> 13 -0.44504804  0.51446894  7   1
#> 14 -0.44504804 -0.77793889  7   2
#> 15  0.32596145  1.01551576  8   1
#> 16  0.32596145  0.40196448  8   2
#> 17  0.64049263 -0.08513675  9   1
#> 18  0.64049263 -0.55204578  9   2
#> 19  0.57759366 -1.22095338 10   1
#> 20  0.57759366 -0.12198455 10   2
fast.reshape(dd,id="id",num="num")
#>             y1 id          y2          ya
#> 1  -1.07751966  1  0.07078768 -1.13476510
#> 2  -0.07170647  2  1.18883471  0.56192682
#> 3  -0.57401916  3  1.80565141 -0.82203929
#> 4   1.40098363  4  1.93306531 -0.07828515
#> 5   1.06150176  5  1.24960078  0.88573012
#> 6   0.65679574  6 -1.04701236  0.13618075
#> 7   0.51446894  7 -0.77793889 -0.44504804
#> 8   1.01551576  8  0.40196448  0.32596145
#> 9  -0.08513675  9 -0.55204578  0.64049263
#> 10 -1.22095338 10 -0.12198455  0.57759366
fast.reshape(dd,id="id",num="num",labelnum=TRUE)
#>             y1 id          y2          y3
#> 1  -1.07751966  1  0.07078768 -1.13476510
#> 2  -0.07170647  2  1.18883471  0.56192682
#> 3  -0.57401916  3  1.80565141 -0.82203929
#> 4   1.40098363  4  1.93306531 -0.07828515
#> 5   1.06150176  5  1.24960078  0.88573012
#> 6   0.65679574  6 -1.04701236  0.13618075
#> 7   0.51446894  7 -0.77793889 -0.44504804
#> 8   1.01551576  8  0.40196448  0.32596145
#> 9  -0.08513675  9 -0.55204578  0.64049263
#> 10 -1.22095338 10 -0.12198455  0.57759366
fast.reshape(d,c(a="y"),labelnum=TRUE) ## New column name
#>             ya           a id num
#> 1  -1.13476510 -1.07751966  1   1
#> 2  -1.13476510  0.07078768  1   2
#> 3   0.56192682 -0.07170647  2   1
#> 4   0.56192682  1.18883471  2   2
#> 5  -0.82203929 -0.57401916  3   1
#> 6  -0.82203929  1.80565141  3   2
#> 7  -0.07828515  1.40098363  4   1
#> 8  -0.07828515  1.93306531  4   2
#> 9   0.88573012  1.06150176  5   1
#> 10  0.88573012  1.24960078  5   2
#> 11  0.13618075  0.65679574  6   1
#> 12  0.13618075 -1.04701236  6   2
#> 13 -0.44504804  0.51446894  7   1
#> 14 -0.44504804 -0.77793889  7   2
#> 15  0.32596145  1.01551576  8   1
#> 16  0.32596145  0.40196448  8   2
#> 17  0.64049263 -0.08513675  9   1
#> 18  0.64049263 -0.55204578  9   2
#> 19  0.57759366 -1.22095338 10   1
#> 20  0.57759366 -0.12198455 10   2


##### Unbalanced data
m <- lava::lvm(c(y1,y2,y3,y4)~ x+z1+z3+z5)
d <- lava::sim(m,3)
d
#>          y1        y2         y3         y4          x        z1         z3
#> 1 0.3276725 -1.863180 -0.7273403 -0.6906565  0.7392404 0.9854002 -0.1529171
#> 2 0.7271163  1.225847  2.4705992  1.7261166 -0.3035924 0.9196450 -0.5327047
#> 3 0.6998353  1.039981 -1.2117033 -2.0067813 -1.5486298 0.1712215  1.7735916
#>           z5
#> 1 -2.1577183
#> 2  0.5516549
#> 3 -0.7475155
fast.reshape(d,c("y","z"))
#>             x          y          z id num
#> 1   0.7392404  0.3276725  0.9854002  1   1
#> 2   0.7392404 -1.8631800         NA  1   2
#> 3   0.7392404 -0.7273403 -0.1529171  1   3
#> 4   0.7392404 -0.6906565         NA  1   4
#> 5   0.7392404         NA -2.1577183  1   5
#> 6  -0.3035924  0.7271163  0.9196450  2   1
#> 7  -0.3035924  1.2258474         NA  2   2
#> 8  -0.3035924  2.4705992 -0.5327047  2   3
#> 9  -0.3035924  1.7261166         NA  2   4
#> 10 -0.3035924         NA  0.5516549  2   5
#> 11 -1.5486298  0.6998353  0.1712215  3   1
#> 12 -1.5486298  1.0399810         NA  3   2
#> 13 -1.5486298 -1.2117033  1.7735916  3   3
#> 14 -1.5486298 -2.0067813         NA  3   4
#> 15 -1.5486298         NA -0.7475155  3   5

##### not-varying syntax:
fast.reshape(d,-c("x"))
#>             x          y          z id num
#> 1   0.7392404  0.3276725  0.9854002  1   1
#> 2   0.7392404 -1.8631800         NA  1   2
#> 3   0.7392404 -0.7273403 -0.1529171  1   3
#> 4   0.7392404 -0.6906565         NA  1   4
#> 5   0.7392404         NA -2.1577183  1   5
#> 6  -0.3035924  0.7271163  0.9196450  2   1
#> 7  -0.3035924  1.2258474         NA  2   2
#> 8  -0.3035924  2.4705992 -0.5327047  2   3
#> 9  -0.3035924  1.7261166         NA  2   4
#> 10 -0.3035924         NA  0.5516549  2   5
#> 11 -1.5486298  0.6998353  0.1712215  3   1
#> 12 -1.5486298  1.0399810         NA  3   2
#> 13 -1.5486298 -1.2117033  1.7735916  3   3
#> 14 -1.5486298 -2.0067813         NA  3   4
#> 15 -1.5486298         NA -0.7475155  3   5

##### Automatically define varying variables from trailing digits
fast.reshape(d)
#>             x          y          z id num
#> 1   0.7392404  0.3276725  0.9854002  1   1
#> 2   0.7392404 -1.8631800         NA  1   2
#> 3   0.7392404 -0.7273403 -0.1529171  1   3
#> 4   0.7392404 -0.6906565         NA  1   4
#> 5   0.7392404         NA -2.1577183  1   5
#> 6  -0.3035924  0.7271163  0.9196450  2   1
#> 7  -0.3035924  1.2258474         NA  2   2
#> 8  -0.3035924  2.4705992 -0.5327047  2   3
#> 9  -0.3035924  1.7261166         NA  2   4
#> 10 -0.3035924         NA  0.5516549  2   5
#> 11 -1.5486298  0.6998353  0.1712215  3   1
#> 12 -1.5486298  1.0399810         NA  3   2
#> 13 -1.5486298 -1.2117033  1.7735916  3   3
#> 14 -1.5486298 -2.0067813         NA  3   4
#> 15 -1.5486298         NA -0.7475155  3   5

##### Prostate cancer example
data(prt)
head(prtw <- fast.reshape(prt,"cancer",id="id"))
#>    country      time status zyg id cancer1 cancer2
#> 31 Denmark  96.98833      1  DZ  1       0       0
#> 39 Denmark  68.04498      1  DZ  3       0       0
#> 51 Denmark  78.78068      1  DZ  5       0       0
#> 70 Denmark 100.95488      1  MZ  9       0       0
#> 83 Denmark 104.55035      1  DZ 12       0       1
#> 95 Denmark  95.65324      1  DZ 15       0       0
ftable(cancer1~cancer2,data=prtw)
#>         cancer1     0     1
#> cancer2                    
#> 0               13405   349
#> 1                 362   106
rm(prtw)