Estimates the casewise concordance based on Concordance and marginal estimate using binreg

binregCasewise(concbreg, margbreg, zygs = c("DZ", "MZ"), newdata = NULL, ...)

Arguments

concbreg

Concordance

margbreg

Marginal estimate

zygs

order of zygosity for estimation of concordance and casewise.

newdata

to give instead of zygs.

...

to pass to estimate function

Details

Uses cluster iid for the two binomial-regression estimates standard errors better than those of casewise that are often conservative.

Author

Thomas Scheike

Examples

data(prt)
prt <- force.same.cens(prt,cause="status")

dd <- bicompriskData(Event(time, status)~strata(zyg)+id(id), data=prt, cause=c(2, 2))
newdata <- data.frame(zyg=c("DZ","MZ"),id=1)

## concordance 
bcif1 <- binreg(Event(time,status)~-1+factor(zyg)+cluster(id), data=dd,
                time=80, cause=1, cens.model=~strata(zyg))
pconc <- predict(bcif1,newdata)

## marginal estimates 
mbcif1 <- binreg(Event(time,status)~cluster(id), data=prt, time=80, cause=2)
mc <- predict(mbcif1,newdata)
mc
#>         pred          se      lower      upper
#> 1 0.04751637 0.002253132 0.04310023 0.05193251
#> 2 0.04751637 0.002253132 0.04310023 0.05193251

cse <- binregCasewise(bcif1,mbcif1)
cse
#> $coef
#>     Estimate      2.5%     97.5%
#> p1 0.1586277 0.1029195 0.2444898
#> p2 0.4041311 0.2843829 0.5743030
#> 
#> $logcoef
#>    Estimate Std.Err   2.5%   97.5%   P-value
#> p1   -1.841  0.2207 -2.274 -1.4086 7.331e-17
#> p2   -0.906  0.1793 -1.257 -0.5546 4.346e-07
#>