Simulation of illness-death model
simMultistate(
n,
cumhaz,
cumhaz2,
death.cumhaz,
death.cumhaz2,
rr = NULL,
rr2 = NULL,
rd = NULL,
rd2 = NULL,
gap.time = FALSE,
max.recurrent = 100,
dependence = 0,
var.z = 0.22,
cor.mat = NULL,
cens = NULL,
...
)
number of id's
cumulative hazard of going from state 1 to 2.
cumulative hazard of going from state 2 to 1.
cumulative hazard of death from state 1.
cumulative hazard of death from state 2.
relative risk adjustment for cumhaz
relative risk adjustment for cumhaz2
relative risk adjustment for death.cumhaz
relative risk adjustment for death.cumhaz2
if true simulates gap-times with specified cumulative hazard
limits number recurrent events to 100
0:independence; 1:all share same random effect with variance var.z; 2:random effect exp(normal) with correlation structure from cor.mat; 3:additive gamma distributed random effects, z1= (z11+ z12)/2 such that mean is 1 , z2= (z11^cor.mat(1,2)+ z13)/2, z3= (z12^(cor.mat(2,3)+z13^cor.mat(1,3))/2, with z11 z12 z13 are gamma with mean and variance 1 , first random effect is z1 and for N1 second random effect is z2 and for N2 third random effect is for death
variance of random effects
correlation matrix for var.z variance of random effects
rate of censoring exponential distribution
Additional arguments to lower level funtions
simMultistate with different death intensities from states 1 and 2
Must give cumulative hazards on some time-range
########################################
## getting some rates to mimick
########################################
data(base1cumhaz)
data(base4cumhaz)
data(drcumhaz)
dr <- drcumhaz
dr2 <- drcumhaz
dr2[,2] <- 1.5*drcumhaz[,2]
base1 <- base1cumhaz
base4 <- base4cumhaz
cens <- rbind(c(0,0),c(2000,0.5),c(5110,3))
iddata <- simMultistate(10000,base1,base1,dr,dr2,cens=cens)
dlist(iddata,.~id|id<3,n=0)
#> id: 1
#> time status entry death from to start stop
#> 1 3.672676 2 0.000000 0 1 2 0.000000 3.672676
#> 10001 217.689153 3 3.672676 1 2 3 3.672676 217.689153
#> ------------------------------------------------------------
#> id: 2
#> time status entry death from to start stop
#> 2 801.6571 2 0.0000 0 1 2 0.0000 801.6571
#> 10002 974.8304 1 801.6571 0 2 1 801.6571 974.8304
#> 16215 1398.5644 2 974.8304 0 1 2 974.8304 1398.5644
#> 19688 1422.6580 1 1398.5644 0 2 1 1398.5644 1422.6580
#> 22113 3081.1661 2 1422.6580 0 1 2 1422.6580 3081.1661
#> 23679 3718.5016 1 3081.1661 0 2 1 3081.1661 3718.5016
#> 24762 3878.9507 2 3718.5016 0 1 2 3718.5016 3878.9507
#> 25440 3995.5113 0 3878.9507 0 2 0 3878.9507 3995.5113
### estimating rates from simulated data
c0 <- phreg(Surv(start,stop,status==0)~+1,iddata)
c3 <- phreg(Surv(start,stop,status==3)~+strata(from),iddata)
c1 <- phreg(Surv(start,stop,status==1)~+1,subset(iddata,from==2))
c2 <- phreg(Surv(start,stop,status==2)~+1,subset(iddata,from==1))
###
par(mfrow=c(2,3))
bplot(c0)
lines(cens,col=2)
bplot(c3,main="rates 1-> 3 , 2->3")
lines(dr,col=1,lwd=2)
lines(dr2,col=2,lwd=2)
###
bplot(c1,main="rate 1->2")
lines(base1,lwd=2)
###
bplot(c2,main="rate 2->1")
lines(base1,lwd=2)