
G-estimator for binomial regression model (Standardized estimates)
Source:R/binomial.regression.R
binregG.RdComputes G-estimator $$ \hat F(t,A=a) = n^{-1} \sum_i \hat F(t,A=a,Z_i) $$. Assumes that the first covariate is $A$. Gives influence functions of these risk estimates and SE's are based on these. If first covariate is a factor then all contrast are computed, and if continuous then considered covariate values are given by Avalues.
References
Blanche PF, Holt A, Scheike T (2022). “On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects.” Lifetime data analysis, 29, 441–482.
Examples
library(mets)
data(bmt); bmt$time <- bmt$time+runif(408)*0.001
bmt$event <- (bmt$cause!=0)*1
b1 <- binreg(Event(time,cause)~age+tcell+platelet,bmt,cause=1,time=50)
sb1 <- binregG(b1,bmt,Avalues=c(0,1,2))
summary(sb1)
#> G-estimator :
#> Estimate Std.Err 2.5% 97.5% P-value
#> risk0 0.4058 0.02588 0.3551 0.4565 1.982e-55
#> risk1 0.5119 0.03706 0.4393 0.5846 2.057e-43
#> risk2 0.6168 0.05516 0.5087 0.7250 4.993e-29
#>
#> Average Treatment effect: difference (G-estimator) :
#> Estimate Std.Err 2.5% 97.5% P-value
#> pa 0.1061 0.02623 0.05471 0.1575 5.222e-05
#> pa.1 0.2110 0.04960 0.11381 0.3082 2.096e-05
#>
#> Average Treatment effect: ratio (G-estimator) :
#> log-ratio:
#> Estimate Std.Err 2.5% 97.5% P-value
#> [pa] 0.2323087 0.05277448 0.1288726 0.3357448 1.073002e-05
#> [pa] 0.4187166 0.08402886 0.2540231 0.5834101 6.260295e-07
#> ratio:
#> Estimate 2.5% 97.5%
#> [pa] 1.261509 1.137545 1.398982
#> [pa] 1.520010 1.289202 1.792139
#>