R/cifreg.R
FG_AugmentCifstrata.Rd
Computes the augmentation term for each individual as well as the sum $$ A(\beta) = \int H(t,X,\beta) \frac{F_2^*(t,s)}{S^*(t,s)} \frac{1}{G_c(t)} dM_c $$ with $$ H(t,X,\beta) = \int_t^\infty (X - E(\beta,t) ) G_c(t) d\Lambda_1^*i(t,s) $$ using a KM for $$G_c(t)$$ and a working model for cumulative baseline related to $$F_1^*(t,s)$$ and $$s$$ is strata, $$S^*(t,s) = 1 - F_1^*(t,s) - F_2^*(t,s)$$, and $$E(\beta^p,t)$$ is given. Assumes that no strata for baseline of ine-Gay model that is augmented.
FG_AugmentCifstrata(
formula,
data = data,
E = NULL,
cause = NULL,
cens.code = 0,
km = TRUE,
case.weights = NULL,
weights = NULL,
offset = NULL,
...
)
formula with 'Event', strata model for CIF given by strata, and strataC specifies censoring strata
data frame
from FG-model
of interest
code of censoring
to use Kaplan-Meier
weights for FG score equations (that follow dN_1)
weights for FG score equations
offsets for FG model
Additional arguments to lower level funtions
After a couple of iterations we end up with a solution of $$ \int (X - E(\beta) ) Y_1(t) w(t) dM_1 + A(\beta) $$ the augmented FG-score.
Standard errors computed under assumption of correct $$G_c$$ model.
set.seed(100)
rho1 <- 0.2; rho2 <- 10
n <- 400
beta=c(0.0,-0.1,-0.5,0.3)
dats <- simul.cifs(n,rho1,rho2,beta,rc=0.2)
dtable(dats,~status)
#>
#> status
#> 0 1 2
#> 14 54 332
#>
dsort(dats) <- ~time
fg <- cifreg(Event(time,status)~Z1+Z2,data=dats,cause=1,propodds=NULL)
summary(fg)
#>
#> n events
#> 400 54
#>
#> 400 clusters
#> coeffients:
#> Estimate S.E. dU^-1/2 P-value
#> Z1 0.028262 0.135312 0.136188 0.8346
#> Z2 -0.149224 0.271222 0.272379 0.5822
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> Z1 1.02866 0.78903 1.3411
#> Z2 0.86138 0.50621 1.4657
#>
#>
fgaugS <- FG_AugmentCifstrata(Event(time,status)~Z1+Z2+strata(Z1,Z2),data=dats,cause=1,E=fg$E)
summary(fgaugS)
#>
#> n events
#> 400 54
#>
#> 400 clusters
#> coeffients:
#> Estimate S.E. dU^-1/2 P-value
#> Z1 0.011964 0.130065 0.136124 0.9267
#> Z2 -0.159372 0.261106 0.272436 0.5416
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> Z1 1.01204 0.78430 1.3059
#> Z2 0.85268 0.51113 1.4225
#>
#>
fgaugS2 <- FG_AugmentCifstrata(Event(time,status)~Z1+Z2+strata(Z1,Z2),data=dats,cause=1,E=fgaugS$E)
summary(fgaugS2)
#>
#> n events
#> 400 54
#>
#> 400 clusters
#> coeffients:
#> Estimate S.E. dU^-1/2 P-value
#> Z1 0.011671 0.130043 0.136123 0.9285
#> Z2 -0.159569 0.261106 0.272437 0.5411
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> Z1 1.01174 0.78411 1.3055
#> Z2 0.85251 0.51103 1.4222
#>
#>