wild bootstrap for uniform bands for Cox models

Bootphreg(
  formula,
  data,
  offset = NULL,
  weights = NULL,
  B = 1000,
  type = c("exp", "poisson", "normal"),
  ...
)

Arguments

formula

formula with 'Surv' outcome (see coxph)

data

data frame

offset

offsets for cox model

weights

weights for Cox score equations

B

bootstraps

type

distribution for multiplier

...

Additional arguments to lower level funtions

References

Wild bootstrap based confidence intervals for multiplicative hazards models, Dobler, Pauly, and Scheike (2018),

Author

Klaus K. Holst, Thomas Scheike

Examples


 n <- 100
 x <- 4*rnorm(n)
 time1 <- 2*rexp(n)/exp(x*0.3)
 time2 <- 2*rexp(n)/exp(x*(-0.3))
 status <- ifelse(time1<time2,1,2)
 time <- pmin(time1,time2)
 rbin <- rbinom(n,1,0.5)
 cc <-rexp(n)*(rbin==1)+(rbin==0)*rep(3,n)
 status <- ifelse(time < cc,status,0)
 time  <- ifelse(time < cc,time,cc)
 data <- data.frame(time=time,status=status,x=x)

 b1 <- Bootphreg(Surv(time,status==1)~x,data,B=1000)
 b2 <- Bootphreg(Surv(time,status==2)~x,data,B=1000)
 c1 <- phreg(Surv(time,status==1)~x,data)
 c2 <- phreg(Surv(time,status==2)~x,data)

 ### exp to make all bootstraps positive
 out <- pred.cif.boot(b1,b2,c1,c2,gplot=0)

 cif.true <- (1-exp(-out$time))*.5
 with(out,plot(time,cif,ylim=c(0,1),type="l"))
 lines(out$time,cif.true,col=3)
 with(out,plotConfRegion(time,band.EE,col=1))
 with(out,plotConfRegion(time,band.EE.log,col=3))
 with(out,plotConfRegion(time,band.EE.log.o,col=2))