wild bootstrap for uniform bands for Cox models
Bootphreg(
formula,
data,
offset = NULL,
weights = NULL,
B = 1000,
type = c("exp", "poisson", "normal"),
...
)
formula with 'Surv' outcome (see coxph
)
data frame
offsets for cox model
weights for Cox score equations
bootstraps
distribution for multiplier
Additional arguments to lower level funtions
Wild bootstrap based confidence intervals for multiplicative hazards models, Dobler, Pauly, and Scheike (2018),
n <- 100
x <- 4*rnorm(n)
time1 <- 2*rexp(n)/exp(x*0.3)
time2 <- 2*rexp(n)/exp(x*(-0.3))
status <- ifelse(time1<time2,1,2)
time <- pmin(time1,time2)
rbin <- rbinom(n,1,0.5)
cc <-rexp(n)*(rbin==1)+(rbin==0)*rep(3,n)
status <- ifelse(time < cc,status,0)
time <- ifelse(time < cc,time,cc)
data <- data.frame(time=time,status=status,x=x)
b1 <- Bootphreg(Surv(time,status==1)~x,data,B=1000)
b2 <- Bootphreg(Surv(time,status==2)~x,data,B=1000)
c1 <- phreg(Surv(time,status==1)~x,data)
c2 <- phreg(Surv(time,status==2)~x,data)
### exp to make all bootstraps positive
out <- pred.cif.boot(b1,b2,c1,c2,gplot=0)
cif.true <- (1-exp(-out$time))*.5
with(out,plot(time,cif,ylim=c(0,1),type="l"))
lines(out$time,cif.true,col=3)
with(out,plotConfRegion(time,band.EE,col=1))
with(out,plotConfRegion(time,band.EE.log,col=3))
with(out,plotConfRegion(time,band.EE.log.o,col=2))