R/binomial.regression.R
BinAugmentCifstrata.Rd
Computes the augmentation term for each individual as well as the sum $$ A = \int_0^t H(u,X) \frac{1}{S^*(u,s)} \frac{1}{G_c(u)} dM_c(u) $$ with $$ H(u,X) = F_1^*(t,s) - F_1^*(u,s) $$ using a KM for $$G_c(t)$$ and a working model for cumulative baseline related to $$F_1^*(t,s)$$ and $$s$$ is strata, $$S^*(t,s) = 1 - F_1^*(t,s) - F_2^*(t,s)$$.
BinAugmentCifstrata(
formula,
data = data,
cause = 1,
cens.code = 0,
km = TRUE,
time = NULL,
weights = NULL,
offset = NULL,
...
)
formula with 'Event', strata model for CIF given by strata, and strataC specifies censoring strata
data frame
of interest
code of censoring
to use Kaplan-Meier
of interest
weights for estimating equations
offsets for logistic regression
Additional arguments to binreg function.
Standard errors computed under assumption of correct $$G_c(s)$$ model.
data(bmt)
dcut(bmt,breaks=2) <- ~age
out1<-BinAugmentCifstrata(Event(time,cause)~platelet+agecat.2+
strata(platelet,agecat.2),data=bmt,cause=1,time=40)
summary(out1)
#>
#> n events
#> 408 157
#>
#> 408 clusters
#> coeffients:
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -0.50047 0.17043 -0.83450 -0.16643 0.0033
#> platelet -0.63482 0.23584 -1.09706 -0.17258 0.0071
#> agecat.2(0.203,1.94] 0.53812 0.21185 0.12291 0.95333 0.0111
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> (Intercept) 0.60625 0.43409 0.8467
#> platelet 0.53003 0.33385 0.8415
#> agecat.2(0.203,1.94] 1.71279 1.13078 2.5943
#>
#>
out2<-BinAugmentCifstrata(Event(time,cause)~platelet+agecat.2+
strata(platelet,agecat.2)+strataC(platelet),data=bmt,cause=1,time=40)
summary(out2)
#>
#> n events
#> 408 157
#>
#> 408 clusters
#> coeffients:
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -0.49984 0.17054 -0.83409 -0.16559 0.0034
#> platelet -0.63650 0.23627 -1.09958 -0.17342 0.0071
#> agecat.2(0.203,1.94] 0.53709 0.21190 0.12177 0.95242 0.0113
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> (Intercept) 0.60663 0.43427 0.8474
#> platelet 0.52914 0.33301 0.8408
#> agecat.2(0.203,1.94] 1.71103 1.12949 2.5920
#>
#>