R/binomial.regression.R
BinAugmentCifstrata.Rd
Computes the augmentation term for each individual as well as the sum $$ A = \int_0^t H(u,X) \frac{1}{S^*(u,s)} \frac{1}{G_c(u)} dM_c(u) $$ with $$ H(u,X) = F_1^*(t,s) - F_1^*(u,s) $$ using a KM for $$G_c(t)$$ and a working model for cumulative baseline related to $$F_1^*(t,s)$$ and $$s$$ is strata, $$S^*(t,s) = 1 - F_1^*(t,s) - F_2^*(t,s)$$.
BinAugmentCifstrata(
formula,
data = data,
cause = 1,
cens.code = 0,
km = TRUE,
time = NULL,
weights = NULL,
offset = NULL,
...
)
formula with 'Event', strata model for CIF given by strata, and strataC specifies censoring strata
data frame
of interest
code of censoring
to use Kaplan-Meier
of interest
weights for estimating equations
offsets for logistic regression
Additional arguments to binreg function.
Standard errors computed under assumption of correct $$G_c(s)$$ model.
data(bmt)
dcut(bmt,breaks=2) <- ~age
out1<-BinAugmentCifstrata(Event(time,cause)~platelet+agecat.2+
strata(platelet,agecat.2),data=bmt,cause=1,time=40)
summary(out1)
#>
#> n events
#> 408 157
#>
#> 408 clusters
#> coeffients:
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -0.51295 0.17090 -0.84791 -0.17799 0.0027
#> platelet -0.63011 0.23585 -1.09237 -0.16785 0.0075
#> agecat.2(0.203,1.94] 0.55926 0.21211 0.14353 0.97500 0.0084
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> (Intercept) 0.59873 0.42831 0.8370
#> platelet 0.53253 0.33542 0.8455
#> agecat.2(0.203,1.94] 1.74938 1.15434 2.6512
#>
#>
out2<-BinAugmentCifstrata(Event(time,cause)~platelet+agecat.2+
strata(platelet,agecat.2)+strataC(platelet),data=bmt,cause=1,time=40)
summary(out2)
#>
#> n events
#> 408 157
#>
#> 408 clusters
#> coeffients:
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) -0.51346 0.17109 -0.84879 -0.17814 0.0027
#> platelet -0.63636 0.23653 -1.09996 -0.17276 0.0071
#> agecat.2(0.203,1.94] 0.56280 0.21229 0.14672 0.97889 0.0080
#>
#> exp(coeffients):
#> Estimate 2.5% 97.5%
#> (Intercept) 0.59842 0.42793 0.8368
#> platelet 0.52922 0.33288 0.8413
#> agecat.2(0.203,1.94] 1.75559 1.15803 2.6615
#>
#>