
Package index
-
ML() - ML model
-
RATE() - Responder Average Treatment Effect
-
RATE.surv() - Responder Average Treatment Effect
-
SL() - SuperLearner wrapper for learner
-
aipw() - AIPW estimator
-
alean() - Assumption Lean inference for generalized linear model parameters
-
ate() - AIPW (doubly-robust) estimator for Average Treatment Effect
-
calibration-class - calibration class object
-
calibration() - Calibration (training)
-
cate() - Conditional Average Treatment Effect estimation
-
cate_link() - Conditional Relative Risk estimation
-
constructor_shared - Construct a learner
-
cross_validated-classcross_validated - cross_validated class object
-
crr() - Conditional Relative Risk estimation
-
cumhaz() - Predict the cumulative hazard/survival function for a survival model
-
cv(<default>) - Cross-validation
-
cv(<learner_sl>) - Cross-validation for learner_sl
-
deprecate_arg_warn() - Cast warning for deprecated function argument names
-
deprecated_argument_names - Deprecated argument names
-
design() - Extract design matrix
-
estimate_truncatedscore() - Estimation of mean clinical outcome truncated by event process
-
expand.list() - Create a list from all combination of input variables
-
int_surv() - Integral approximation of a time dependent function. Computes an approximation of \(\int_start^stop S(t) dt\), where \(S(t)\) is a survival function, for a selection of start and stop time points.
-
learner - R6 class for prediction models
-
learner_expand_grid() - Construct learners from a grid of parameters
-
learner_gam() - Construct a learner
-
learner_glm() - Construct a learner
-
learner_glmnet_cv() - Construct a learner
-
learner_grf() - Construct a learner
-
learner_hal() - Construct a learner
-
learner_isoreg() - Construct a learner
-
learner_mars() - Construct a learner
-
learner_naivebayes() - Construct a learner
-
learner_sl() - Construct a learner
-
learner_stratify() - Construct stratified learner
-
learner_svm() - Construct a learner
-
learner_xgboost() - Construct a learner
-
ml_model - R6 class for prediction models
-
naivebayes-class - naivebayes class object
-
naivebayes() - Naive Bayes classifier
-
nondom() - Find non-dominated points of a set
-
pava() - Pooled Adjacent Violators Algorithm
-
predict(<density>) - Prediction for kernel density estimates
-
predict(<naivebayes>) - Predictions for Naive Bayes Classifier
-
predict(<superlearner>) - Predict Method for superlearner Fits
-
riskreg() - Risk regression
-
riskreg_cens() - Binary regression models with right censored outcomes
-
score(<superlearner>) - Extract average cross-validated score of individual learners
-
scoring() - Predictive model scoring
-
softmax() - Softmax transformation
-
solve_ode() - Solve ODE
-
specify_ode() - Specify Ordinary Differential Equation (ODE)
-
stratify() - Identify Stratification Variables
-
superlearner() - Superlearner (stacked/ensemble learner)
-
targeted-classriskreg.targetedate.targeted - targeted class object
-
terms(<design>) - Extract model component from design object
-
test_intersection_sw() - Signed Wald intersection test
-
test_zmax_onesided() - One-sided Zmax test
-
truncatedscore - Scores truncated by death
-
weights(<superlearner>) - Extract ensemble weights