Skip to contents

All functions

ML()
ML model
RATE()
Responder Average Treatment Effect
RATE.surv()
Responder Average Treatment Effect
SL()
SuperLearner wrapper for learner
aipw()
AIPW estimator
alean()
Assumption Lean inference for generalized linear model parameters
ate()
AIPW (doubly-robust) estimator for Average Treatment Effect
calibration-class
calibration class object
calibration()
Calibration (training)
cate()
Conditional Average Treatment Effect estimation
cate_link()
Conditional Relative Risk estimation
constructor_shared
Construct a learner
cross_validated-class cross_validated
cross_validated class object
crr()
Conditional Relative Risk estimation
cumhaz()
Predict the cumulative hazard/survival function for a survival model
cv(<default>)
Cross-validation
cv(<learner_sl>)
Cross-validation for learner_sl
deprecate_arg_warn()
Cast warning for deprecated function argument names
deprecated_argument_names
Deprecated argument names
design()
Extract design matrix
estimate_truncatedscore()
Estimation of mean clinical outcome truncated by event process
expand.list()
Create a list from all combination of input variables
int_surv()
Integral approximation of a time dependent function. Computes an approximation of \(\int_start^stop S(t) dt\), where \(S(t)\) is a survival function, for a selection of start and stop time points.
learner
R6 class for prediction models
learner_expand_grid()
Construct learners from a grid of parameters
learner_gam()
Construct a learner
learner_glm()
Construct a learner
learner_glmnet_cv()
Construct a learner
learner_grf()
Construct a learner
learner_hal()
Construct a learner
learner_isoreg()
Construct a learner
learner_mars()
Construct a learner
learner_naivebayes()
Construct a learner
learner_sl()
Construct a learner
learner_stratify()
Construct stratified learner
learner_svm()
Construct a learner
learner_xgboost()
Construct a learner
ml_model
R6 class for prediction models
naivebayes-class
naivebayes class object
naivebayes()
Naive Bayes classifier
nondom()
Find non-dominated points of a set
pava()
Pooled Adjacent Violators Algorithm
predict(<density>)
Prediction for kernel density estimates
predict(<naivebayes>)
Predictions for Naive Bayes Classifier
predict(<superlearner>)
Predict Method for superlearner Fits
riskreg()
Risk regression
riskreg_cens()
Binary regression models with right censored outcomes
score(<superlearner>)
Extract average cross-validated score of individual learners
scoring()
Predictive model scoring
softmax()
Softmax transformation
solve_ode()
Solve ODE
specify_ode()
Specify Ordinary Differential Equation (ODE)
stratify()
Identify Stratification Variables
superlearner()
Superlearner (stacked/ensemble learner)
targeted-class riskreg.targeted ate.targeted
targeted class object
terms(<design>)
Extract model component from design object
test_intersection_sw()
Signed Wald intersection test
test_zmax_onesided()
One-sided Zmax test
truncatedscore
Scores truncated by death
weights(<superlearner>)
Extract ensemble weights