All functions

ML()

ML model

NB-class

NB class object

NB()

Naive Bayes

RATE()

Responder Average Treatment Effect

RATE.surv()

Responder Average Treatment Effect

SL()

SuperLearner wrapper for ml_model

scoring()

Predictive model scoring

aipw()

AIPW estimator

alean()

Assumption Lean inference for generalized linear model parameters

ate()

AIPW (doubly-robust) estimator for Average Treatement Effect

calibration-class

calibration class object

calibration()

Calibration (training)

cate()

Conditional Average Treatment Effect estimation

cate_link()

Conditional Relative Risk estimation

cross_validated-class cross_validated

cross_validated class object

crr()

Conditional Relative Risk estimation

cv()

Cross-validation

design()

Extract design matrix

expand.list()

Create a list from all combination of input variables

ml_model predictor predictor_glm predictor_gam predictor_glmnet predictor_grf predictor_grf_binary predictor_xgboost predictor_xgboost_multiclass predictor_xgboost_count predictor_xgboost_cox predictor_xgboost_binary predictor_hal predictor_isoreg

R6 class for prediction models

nondom()

Find non-dominated points of a set

pava()

Pooled Adjacent Violators Algorithm

predict(<NB>)

Predictions for Naive Bayes Classifier

predict(<density>)

Prediction for kernel density estimates

predictor_sl()

Superlearner (stacked/ensemble learner)

riskreg()

Risk regression

riskreg_cens()

Binary regression models with right censored outcomes

softmax()

Softmax transformation

solve_ode()

Solve ODE

specials(<design>)

Extract model component from design object

specify_ode()

Specify Ordinary Differential Equation (ODE)

targeted-class riskreg.targeted ate.targeted

targeted class object