All functions

ML()

ML model

RATE()

Responder Average Treatment Effect

RATE.surv()

Responder Average Treatment Effect

SL()

SuperLearner wrapper for learner

aipw()

AIPW estimator

alean()

Assumption Lean inference for generalized linear model parameters

ate()

AIPW (doubly-robust) estimator for Average Treatment Effect

calibration-class

calibration class object

calibration()

Calibration (training)

cate()

Conditional Average Treatment Effect estimation

cate_link()

Conditional Relative Risk estimation

constructor_shared

Construct a learner

cross_validated-class cross_validated

cross_validated class object

crr()

Conditional Relative Risk estimation

cumhaz()

Predict the cumulative hazard/survival function for a survival model

cv(<default>)

Cross-validation

cv(<learner_sl>)

Cross-validation for learner_sl

deprecate_arg_warn()

Cast warning for deprecated function argument names

deprecated_argument_names

Deprecated argument names

design()

Extract design matrix

estimate_truncatedscore()

Estimation of mean clinical outcome truncated by event process

expand.list()

Create a list from all combination of input variables

int_surv()

Integral approximation of a time dependent function. Computes an approximation of \(\int_start^stop S(t) dt\), where \(S(t)\) is a survival function, for a selection of start and stop time points.

learner

R6 class for prediction models

learner_expand_grid()

Construct learners from a grid of parameters

learner_gam()

Construct a learner

learner_glm()

Construct a learner

learner_glmnet_cv()

Construct a learner

learner_grf()

Construct a learner

learner_hal()

Construct a learner

learner_isoreg()

Construct a learner

learner_mars()

Construct a learner

learner_naivebayes()

Construct a learner

learner_sl()

Construct a learner

learner_stratify()

Construct stratified learner

learner_svm()

Construct a learner

learner_xgboost()

Construct a learner

ml_model

R6 class for prediction models

naivebayes-class

naivebayes class object

naivebayes()

Naive Bayes classifier

nondom()

Find non-dominated points of a set

pava()

Pooled Adjacent Violators Algorithm

predict(<density>)

Prediction for kernel density estimates

predict(<naivebayes>)

Predictions for Naive Bayes Classifier

predict(<superlearner>)

Predict Method for superlearner Fits

riskreg()

Risk regression

riskreg_cens()

Binary regression models with right censored outcomes

score(<superlearner>)

Extract average cross-validated score of individual learners

scoring()

Predictive model scoring

softmax()

Softmax transformation

solve_ode()

Solve ODE

specify_ode()

Specify Ordinary Differential Equation (ODE)

stratify()

Identify Stratification Variables

superlearner()

Superlearner (stacked/ensemble learner)

targeted-class riskreg.targeted ate.targeted

targeted class object

terms(<design>)

Extract model component from design object

test_intersectsignedwald()

Signed intersection Wald test

truncatedscore

Scores truncated by death

weights(<superlearner>)

Extract ensemble weights