Find the non-dominated point of a set (minima of a point set).

## Arguments

- x
matrix

- ...
additional arguments to lower level functions

## Details

A point x dominates y if it is never worse and at least in one case strictly better.
Formally, let f_i denote the ith coordinate of the condition (objective) function,
then for all i: f_i(x)<=f_i(y) and there exists j: f_j(x)<f_j(y).

Based on the algorithm of Kung et al. 1975.

## Author

Klaus Kähler Holst

## Examples

```
rbind(
c(1.0, 0.5),
c(0.0, 1.0),
c(1.0, 0.0),
c(0.5, 1.0),
c(1.0, 1.0),
c(0.8, 0.8)) |> nondom()
#> [,1] [,2]
#> [1,] 0.0 1.0
#> [2,] 0.8 0.8
#> [3,] 1.0 0.5
```