AIPW for the mean (and linear projections of the EIF) with missing observations
aipw(response_model, propensity_model, formula = ~1, data, ...)
Model for the response given covariates (learner or formula)
Optional missing data mechanism model (propensity model) (learner or formula)
design specifying the OLS estimator with outcome given by the EIF
data.frame
additional arguments (see cate()
)
m <- lava::lvm(y ~ x+z, r ~ x) |>
lava::distribution(~ r, value = lava::binomial.lvm()) |>
transform(y0~r+y, value = \(x) { x[x[,1]==0,2] <- NA; x[,2] })
d <- lava::sim(m,1e3,seed=1)
aipw(y0 ~ x, data=d)
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) 0.05148 0.08338 -0.1119 0.2149 0.537