AIPW for the mean (and linear projections of the EIF) with missing observations
Arguments
- response_model
Model for the response given covariates (learner or formula)
- propensity_model
Optional missing data mechanism model (propensity model) (learner or formula)
- formula
design specifying the OLS estimator with outcome given by the EIF
- data
data.frame
- ...
additional arguments (see
cate())
Examples
m <- lava::lvm(y ~ x+z, r ~ x) |>
lava::distribution(~ r, value = lava::binomial.lvm()) |>
transform(y0~r+y, value = \(x) { x[x[,1]==0,2] <- NA; x[,2] })
d <- lava::sim(m,1e3,seed=1)
aipw(y0 ~ x, data=d)
#> Estimate Std.Err 2.5% 97.5% P-value
#> (Intercept) 0.05148 0.08338 -0.1119 0.2149 0.537
