Estimation of the Average Treatment Effect among Responders for Survival Outcomes
Arguments
- response
Response formula (e.g., Surv(time, event) ~ D + W).
- post.treatment
Post treatment marker formula (e.g., D ~ W)
- treatment
Treatment formula (e.g, A ~ 1)
- censoring
Censoring formula (e.g., Surv(time, event == 0) ~ D + A + W)).
- tau
Time-point of interest, see Details.
- data
data.frame
- M
Number of folds in cross-fitting (M=1 is no cross-fitting)
- pr.treatment
(optional) Randomization probability of treatment.
- call.response
Model call for the response model (e.g. "mets::phreg").
- args.response
Additional arguments to the response model.
- SL.args.post.treatment
Arguments to SuperLearner for the post treatment indicator
- call.censoring
Similar to call.response.
- args.censoring
Similar to args.response.
- preprocess
(optional) Data preprocessing function
- ...
Additional arguments to lower level functions
Details
Estimation of $$ \frac{P(T \leq \tau|A=1) - P(T \leq \tau|A=1)}{E[D|A=1]} $$ under right censoring based on plug-in estimates of \(P(T \leq \tau|A=a)\) and \(E[D|A=1]\).
An efficient one-step estimator of \(P(T \leq \tau|A=a)\) is constructed using the efficient influence function $$ \frac{I\{A=a\}}{P(A = a)} \Big(\frac{\Delta}{S^c_{0}(\tilde T|X)} I\{\tilde T \leq \tau\} + \int_0^\tau \frac{S_0(u|X)-S_0(\tau|X)}{S_0(u|X)S^c_0(u|X)} d M^c_0(u|X)\Big) $$ $$ + \Big(1 - \frac{I\{A=a\}}{P(A = a)}\Big)F_0(\tau|A=a, W) - P(T \leq \tau|A=a). $$ An efficient one-step estimator of \(E[D|A=1]\) is constructed using the efficient influence function $$ \frac{A}{P(A = 1)}\left(D-E[D|A=1, W]\right) + E[D|A=1, W] -E[D|A=1]. $$
