Estimation of the Average Treatment Effect among Responders for Survival Outcomes
Response formula (e.g., Surv(time, event) ~ D + W).
Post treatment marker formula (e.g., D ~ W)
Treatment formula (e.g, A ~ 1)
Censoring formula (e.g., Surv(time, event == 0) ~ D + A + W)).
Time-point of interest, see Details.
data.frame
Number of folds in cross-fitting (M=1 is no cross-fitting)
(optional) Randomization probability of treatment.
Model call for the response model (e.g. "mets::phreg").
Additional arguments to the response model.
Arguments to SuperLearner for the post treatment indicator
Similar to call.response.
Similar to args.response.
(optional) Data preprocessing function
Additional arguments to lower level functions
estimate object
Estimation of $$ \frac{P(T \leq \tau|A=1) - P(T \leq \tau|A=1)}{E[D|A=1]} $$ under right censoring based on plug-in estimates of \(P(T \leq \tau|A=a)\) and \(E[D|A=1]\).
An efficient one-step estimator of \(P(T \leq \tau|A=a)\) is constructed using the efficient influence function $$ \frac{I\{A=a\}}{P(A = a)} \Big(\frac{\Delta}{S^c_{0}(\tilde T|X)} I\{\tilde T \leq \tau\} + \int_0^\tau \frac{S_0(u|X)-S_0(\tau|X)}{S_0(u|X)S^c_0(u|X)} d M^c_0(u|X)\Big) $$ $$ + \Big(1 - \frac{I\{A=a\}}{P(A = a)}\Big)F_0(\tau|A=a, W) - P(T \leq \tau|A=a). $$ An efficient one-step estimator of \(E[D|A=1]\) is constructed using the efficient influence function $$ \frac{A}{P(A = 1)}\left(D-E[D|A=1, W]\right) + E[D|A=1, W] -E[D|A=1]. $$