R/recurrent.marginal.R
prob.exceed.recurrent.Rd
Estimation of probability of more that k events for recurrent events process where there is terminal event, based on this also estimate of variance of recurrent events. The estimator is based on cumulative incidence of exceeding "k" events. In contrast the probability of exceeding k events can also be computed as a counting process integral, and this is implemented in prob.exceedRecurrent
prob.exceed.recurrent(
data,
type,
status = "status",
death = "death",
start = "start",
stop = "stop",
id = "id",
times = NULL,
exceed = NULL,
cifmets = TRUE,
strata = NULL,
all.cifs = FALSE,
...
)
data-frame
type of evnent (code) related to status
name of status
name of death indicator
start stop call of Hist() of prodlim
start stop call of Hist() of prodlim
id
time at which to get probabilites P(N1(t) >= n)
n's for which which to compute probabilites P(N1(t) >= n)
if true uses cif of mets package rather than prodlim
to stratify according to variable, only for cifmets=TRUE, when strata is given then only consider the output in the all.cifs
if true then returns list of all fitted objects in cif.exceed
Additional arguments to lower level funtions
Scheike, Eriksson, Tribler (2019) The mean, variance and correlation for bivariate recurrent events with a terminal event, JRSS-C
########################################
## getting some rates to mimick
########################################
data(base1cumhaz)
data(base4cumhaz)
data(drcumhaz)
dr <- drcumhaz
base1 <- base1cumhaz
base4 <- base4cumhaz
cor.mat <- corM <- rbind(c(1.0, 0.6, 0.9), c(0.6, 1.0, 0.5), c(0.9, 0.5, 1.0))
rr <- simRecurrentII(1000,base4,cumhaz2=base4,death.cumhaz=dr,cens=2/5000)
rr <- count.history(rr)
dtable(rr,~death+status)
#>
#> status 0 1 2
#> death
#> 0 378 177 224
#> 1 622 0 0
oo <- prob.exceedRecurrent(rr,1)
bplot(oo)
par(mfrow=c(1,2))
with(oo,plot(time,mu,col=2,type="l"))
###
with(oo,plot(time,varN,type="l"))
### Bivariate probability of exceeding
oo <- prob.exceedBiRecurrent(rr,1,2,exceed1=c(1,5),exceed2=c(1,2))
with(oo, matplot(time,pe1e2,type="s"))
nc <- ncol(oo$pe1e2)
legend("topleft",legend=colnames(oo$pe1e2),lty=1:nc,col=1:nc)
# \donttest{
### do not test to avoid dependence on prodlim
### now estimation based on cumualative incidence, but do not test to avoid dependence on prodlim
### library(prodlim)
pp <- prob.exceed.recurrent(rr,1,status="status",death="death",start="entry",stop="time",id="id")
with(pp, matplot(times,prob,type="s"))
###
with(pp, matlines(times,se.lower,type="s"))
with(pp, matlines(times,se.upper,type="s"))
# }