Kaplan-Meier with robust standard errors
Robust variance is default variance with the summary.
km(
formula,
data = data,
conf.type = "log",
conf.int = 0.95,
robust = TRUE,
...
)
Arguments
- formula
formula with 'Surv' outcome (see coxph
)
- data
data frame
- conf.type
transformation
- conf.int
level of confidence intervals
- robust
for robust standard errors based on martingales
- ...
Additional arguments to lower level funtions
Examples
data(TRACE)
TRACE$cluster <- sample(1:100,1878,replace=TRUE)
out1 <- km(Surv(time,status==9)~strata(vf,chf),data=TRACE)
out2 <- km(Surv(time,status==9)~strata(vf,chf)+cluster(cluster),data=TRACE)
par(mfrow=c(1,2))
bplot(out1,se=TRUE)
bplot(out2,se=TRUE)