Internal function. Calculates Inverse Probability of Censoring Weights (IPCW) and adds them to a data.frame
ipw(
formula,
data,
cluster,
same.cens = FALSE,
obs.only = FALSE,
weight.name = "w",
trunc.prob = FALSE,
weight.name2 = "wt",
indi.weight = "pr",
cens.model = "aalen",
pairs = FALSE,
theta.formula = ~1,
...
)
Formula specifying the censoring model
data frame
clustering variable
For clustered data, should same censoring be assumed (bivariate probability calculated as mininum of the marginal probabilities)
Return data with uncensored observations only
Name of weight variable in the new data.frame
If TRUE truncation probabilities are also calculated and stored in 'weight.name2' (based on Clayton-Oakes gamma frailty model)
Name of truncation probabilities
Name of individual censoring weight in the new data.frame
Censoring model (default Aalens additive model)
For paired data (e.g. twins) only the complete pairs are returned (With pairs=TRUE)
Model for the dependence parameter in the Clayton-Oakes model (truncation only)
Additional arguments to censoring model
if (FALSE) { # \dontrun{
data("prt",package="mets")
prtw <- ipw(Surv(time,status==0)~country, data=prt[sample(nrow(prt),5000),],
cluster="id",weight.name="w")
plot(0,type="n",xlim=range(prtw$time),ylim=c(0,1),xlab="Age",ylab="Probability")
count <- 0
for (l in unique(prtw$country)) {
count <- count+1
prtw <- prtw[order(prtw$time),]
with(subset(prtw,country==l),
lines(time,w,col=count,lwd=2))
}
legend("topright",legend=unique(prtw$country),col=1:4,pch=-1,lty=1)
} # }