Regression for data frames with dutility call

dreg(
  data,
  y,
  x = NULL,
  z = NULL,
  x.oneatatime = TRUE,
  x.base.names = NULL,
  z.arg = c("clever", "base", "group", "condition"),
  fun. = lm,
  summary. = summary,
  regex = FALSE,
  convert = NULL,
  doSummary = TRUE,
  special = NULL,
  equal = TRUE,
  test = 1,
  ...
)

Arguments

data

data frame

y

name of variable, or fomula, or names of variables on data frame.

x

name of variable, or fomula, or names of variables on data frame.

z

name of variable, or fomula, or names of variables on data frame.

x.oneatatime

x's one at a time

x.base.names

base covarirates

z.arg

what is Z, c("clever","base","group","condition"), clever decides based on type of Z, base means that Z is used as fixed baseline covaraites for all X, group means the analyses is done based on groups of Z, and condition means that Z specifies a condition on the data

fun.

function lm is default

summary.

summary to use

regex

regex

convert

convert

doSummary

doSummary or not

special

special's

equal

to do pairwise stuff

test

development argument

...

Additional arguments for fun

Author

Klaus K. Holst, Thomas Scheike

Examples

##'
data(iris)
dat <- iris
drename(dat) <- ~.
names(dat)
#> [1] "sepal.length" "sepal.width"  "petal.length" "petal.width"  "species"     
set.seed(1)
dat$time <- runif(nrow(dat))
dat$time1 <- runif(nrow(dat))
dat$status <- rbinom(nrow(dat),1,0.5)
dat$S1 <- with(dat, Surv(time,status))
dat$S2 <- with(dat, Surv(time1,status))
dat$id <- 1:nrow(dat)

mm <- dreg(dat, "*.length"~"*.width"|I(species=="setosa" & status==1))
mm <- dreg(dat, "*.length"~"*.width"|species+status)
mm <- dreg(dat, "*.length"~"*.width"|species)
mm <- dreg(dat, "*.length"~"*.width"|species+status,z.arg="group")

 ## Reduce Ex.Timings
y <- "S*"~"*.width"
xs <- dreg(dat, y, fun.=phreg)
xs <- dreg(dat, y, fun.=survdiff)

y <- "S*"~"*.width"
xs <- dreg(dat, y, x.oneatatime=FALSE, fun.=phreg)

## under condition
y <- S1~"*.width"|I(species=="setosa" & sepal.width>3)
xs <- dreg(dat, y, z.arg="condition", fun.=phreg)
xs <- dreg(dat, y, fun.=phreg)

## under condition
y <- S1~"*.width"|species=="setosa"
xs <- dreg(dat, y, z.arg="condition", fun.=phreg)
xs <- dreg(dat, y, fun.=phreg)

## with baseline  after |
y <- S1~"*.width"|sepal.length
xs <- dreg(dat, y, fun.=phreg)

## by group by species, not working
y <- S1~"*.width"|species
ss <- split(dat, paste(dat$species, dat$status))

xs <- dreg(dat, y, fun.=phreg)

## species as base, species is factor so assumes that this is grouping
y <- S1~"*.width"|species
xs <- dreg(dat, y, z.arg="base", fun.=phreg)

##  background var after | and then one of x's at at time
y <- S1~"*.width"|status+"sepal*"
xs <- dreg(dat, y, fun.=phreg)

##  background var after | and then one of x's at at time
##y <- S1~"*.width"|status+"sepal*"
##xs <- dreg(dat, y, x.oneatatime=FALSE, fun.=phreg)
##xs <- dreg(dat, y, fun.=phreg)

##  background var after | and then one of x's at at time
##y <- S1~"*.width"+factor(species)
##xs <- dreg(dat, y, fun.=phreg)
##xs <- dreg(dat, y, fun.=phreg, x.oneatatime=FALSE)

y <- S1~"*.width"|factor(species)
xs <- dreg(dat, y, z.arg="base", fun.=phreg)

y <- S1~"*.width"|cluster(id)+factor(species)
xs <- dreg(dat, y, z.arg="base", fun.=phreg)
xs <- dreg(dat, y, z.arg="base", fun.=coxph)

## under condition with groups
y <- S1~"*.width"|I(sepal.length>4)
xs <- dreg(subset(dat, species=="setosa"), y,z.arg="group",fun.=phreg)

## under condition with groups
y <- S1~"*.width"+I(log(sepal.length))|I(sepal.length>4)
xs <- dreg(subset(dat, species=="setosa"), y,z.arg="group",fun.=phreg)

y <- S1~"*.width"+I(dcut(sepal.length))|I(sepal.length>4)
xs <- dreg(subset(dat,species=="setosa"), y,z.arg="group",fun.=phreg)

ff <- function(formula,data,...) {
 ss <- survfit(formula,data,...)
 kmplot(ss,...)
 return(ss)
}

if (interactive()) {
dcut(dat) <- ~"*.width"
y <- S1~"*.4"|I(sepal.length>4)
par(mfrow=c(1, 2))
xs <- dreg(dat, y, fun.=ff)
}