Regression for data frames with dutility call
dreg(
data,
y,
x = NULL,
z = NULL,
x.oneatatime = TRUE,
x.base.names = NULL,
z.arg = c("clever", "base", "group", "condition"),
fun. = lm,
summary. = summary,
regex = FALSE,
convert = NULL,
doSummary = TRUE,
special = NULL,
equal = TRUE,
test = 1,
...
)
data frame
name of variable, or fomula, or names of variables on data frame.
name of variable, or fomula, or names of variables on data frame.
name of variable, or fomula, or names of variables on data frame.
x's one at a time
base covarirates
what is Z, c("clever","base","group","condition"), clever decides based on type of Z, base means that Z is used as fixed baseline covaraites for all X, group means the analyses is done based on groups of Z, and condition means that Z specifies a condition on the data
function lm is default
summary to use
regex
convert
doSummary or not
special's
to do pairwise stuff
development argument
Additional arguments for fun
##'
data(iris)
dat <- iris
drename(dat) <- ~.
names(dat)
#> [1] "sepal.length" "sepal.width" "petal.length" "petal.width" "species"
set.seed(1)
dat$time <- runif(nrow(dat))
dat$time1 <- runif(nrow(dat))
dat$status <- rbinom(nrow(dat),1,0.5)
dat$S1 <- with(dat, Surv(time,status))
dat$S2 <- with(dat, Surv(time1,status))
dat$id <- 1:nrow(dat)
mm <- dreg(dat, "*.length"~"*.width"|I(species=="setosa" & status==1))
mm <- dreg(dat, "*.length"~"*.width"|species+status)
mm <- dreg(dat, "*.length"~"*.width"|species)
mm <- dreg(dat, "*.length"~"*.width"|species+status,z.arg="group")
## Reduce Ex.Timings
y <- "S*"~"*.width"
xs <- dreg(dat, y, fun.=phreg)
xs <- dreg(dat, y, fun.=survdiff)
y <- "S*"~"*.width"
xs <- dreg(dat, y, x.oneatatime=FALSE, fun.=phreg)
## under condition
y <- S1~"*.width"|I(species=="setosa" & sepal.width>3)
xs <- dreg(dat, y, z.arg="condition", fun.=phreg)
xs <- dreg(dat, y, fun.=phreg)
## under condition
y <- S1~"*.width"|species=="setosa"
xs <- dreg(dat, y, z.arg="condition", fun.=phreg)
xs <- dreg(dat, y, fun.=phreg)
## with baseline after |
y <- S1~"*.width"|sepal.length
xs <- dreg(dat, y, fun.=phreg)
## by group by species, not working
y <- S1~"*.width"|species
ss <- split(dat, paste(dat$species, dat$status))
xs <- dreg(dat, y, fun.=phreg)
## species as base, species is factor so assumes that this is grouping
y <- S1~"*.width"|species
xs <- dreg(dat, y, z.arg="base", fun.=phreg)
## background var after | and then one of x's at at time
y <- S1~"*.width"|status+"sepal*"
xs <- dreg(dat, y, fun.=phreg)
## background var after | and then one of x's at at time
##y <- S1~"*.width"|status+"sepal*"
##xs <- dreg(dat, y, x.oneatatime=FALSE, fun.=phreg)
##xs <- dreg(dat, y, fun.=phreg)
## background var after | and then one of x's at at time
##y <- S1~"*.width"+factor(species)
##xs <- dreg(dat, y, fun.=phreg)
##xs <- dreg(dat, y, fun.=phreg, x.oneatatime=FALSE)
y <- S1~"*.width"|factor(species)
xs <- dreg(dat, y, z.arg="base", fun.=phreg)
y <- S1~"*.width"|cluster(id)+factor(species)
xs <- dreg(dat, y, z.arg="base", fun.=phreg)
xs <- dreg(dat, y, z.arg="base", fun.=coxph)
## under condition with groups
y <- S1~"*.width"|I(sepal.length>4)
xs <- dreg(subset(dat, species=="setosa"), y,z.arg="group",fun.=phreg)
## under condition with groups
y <- S1~"*.width"+I(log(sepal.length))|I(sepal.length>4)
xs <- dreg(subset(dat, species=="setosa"), y,z.arg="group",fun.=phreg)
y <- S1~"*.width"+I(dcut(sepal.length))|I(sepal.length>4)
xs <- dreg(subset(dat,species=="setosa"), y,z.arg="group",fun.=phreg)
ff <- function(formula,data,...) {
ss <- survfit(formula,data,...)
kmplot(ss,...)
return(ss)
}
if (interactive()) {
dcut(dat) <- ~"*.width"
y <- S1~"*.4"|I(sepal.length>4)
par(mfrow=c(1, 2))
xs <- dreg(dat, y, fun.=ff)
}