Estimation based on derived hazards and recursive estimating equations. fits two parametrizations 1) $$ F_1(t,X) = 1 - \exp( - \exp( X^T \beta ) \Lambda_1(t)) $$ and $$ F_2(t,X_2) = 1 - \exp( - \exp( X_2^T \beta_2 ) \Lambda_2(t)) $$ or restricted version 2) $$ F_1(t,X) = 1 - \exp( - \exp( X^T \beta ) \Lambda_1(t)) $$ and $$ F_2(t,X_2,X) = ( 1 - \exp( - \exp( X_2^T \beta_2 ) \Lambda_2(t)) ) (1 - F_1(\infty,X)) $$
Examples
library(mets)
res <- 0
data(bmt)
bmt$age2 <- bmt$age
newdata <- bmt[1:19,]
## if (interactive()) par(mfrow=c(5,3))
## same X1 and X2
pr2 <- doubleFGR(Event(time,cause)~age+platelet,data=bmt,restrict=res)
##if (interactive()) {
## bplotdFG(pr2,cause=1)
## bplotdFG(pr2,cause=2,add=TRUE)
##}
##pp21 <- predictdFG(pr2,newdata=newdata)
##pp22 <- predictdFG(pr2,newdata=newdata,cause=2)
##if (interactive()) {
## plot(pp21)
## plot(pp22,add=TRUE,col=2)
##}
##pp21 <- predictdFG(pr2)
##pp22 <- predictdFG(pr2,cause=2)
##if (interactive()) {
## plot(pp21)
## plot(pp22,add=TRUE,col=2)
##}
pr2 <- doubleFGR(Event(time,cause)~strata(platelet),data=bmt,restrict=res)
## different X1 and X2
pr2 <- doubleFGR(Event(time,cause)~age+platelet+age2,data=bmt,X2=3,restrict=res)
### uden X1
pr2 <- doubleFGR(Event(time,cause)~age+platelet,data=bmt,X2=1:2,restrict=res)
### without X2
pr2 <- doubleFGR(Event(time,cause)~age+platelet,data=bmt,X2=0,restrict=res)
