aggregating for for data frames
daggregate(
data,
y = NULL,
x = NULL,
subset,
...,
fun = "summary",
regex = mets.options()$regex,
missing = FALSE,
remove.empty = FALSE,
matrix = FALSE,
silent = FALSE,
na.action = na.pass,
convert = NULL
)
data.frame
name of variable, or formula, or names of variables on data frame.
name of variable, or formula, or names of variables on data frame.
subset expression
additional arguments to lower level functions
function defining aggregation
interpret x,y as regular expressions
Missing used in groups (x)
remove empty groups from output
if TRUE a matrix is returned instead of an array
suppress messages
How model.frame deals with 'NA's
if TRUE try to coerce result into matrix. Can also be a user-defined function
data("sTRACE")
daggregate(iris, "^.e.al", x="Species", fun=cor, regex=TRUE)
#> Species: setosa
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> Sepal.Length 1.0000000 0.7425467 0.2671758 0.2780984
#> Sepal.Width 0.7425467 1.0000000 0.1777000 0.2327520
#> Petal.Length 0.2671758 0.1777000 1.0000000 0.3316300
#> Petal.Width 0.2780984 0.2327520 0.3316300 1.0000000
#> ------------------------------------------------------------
#> Species: versicolor
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> Sepal.Length 1.0000000 0.5259107 0.7540490 0.5464611
#> Sepal.Width 0.5259107 1.0000000 0.5605221 0.6639987
#> Petal.Length 0.7540490 0.5605221 1.0000000 0.7866681
#> Petal.Width 0.5464611 0.6639987 0.7866681 1.0000000
#> ------------------------------------------------------------
#> Species: virginica
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> Sepal.Length 1.0000000 0.4572278 0.8642247 0.2811077
#> Sepal.Width 0.4572278 1.0000000 0.4010446 0.5377280
#> Petal.Length 0.8642247 0.4010446 1.0000000 0.3221082
#> Petal.Width 0.2811077 0.5377280 0.3221082 1.0000000
daggregate(iris, Sepal.Length+Petal.Length ~Species, fun=summary)
#> Species: setosa
#> Sepal.Length Petal.Length
#> Min. :4.300 Min. :1.000
#> 1st Qu.:4.800 1st Qu.:1.400
#> Median :5.000 Median :1.500
#> Mean :5.006 Mean :1.462
#> 3rd Qu.:5.200 3rd Qu.:1.575
#> Max. :5.800 Max. :1.900
#> ------------------------------------------------------------
#> Species: versicolor
#> Sepal.Length Petal.Length
#> Min. :4.900 Min. :3.00
#> 1st Qu.:5.600 1st Qu.:4.00
#> Median :5.900 Median :4.35
#> Mean :5.936 Mean :4.26
#> 3rd Qu.:6.300 3rd Qu.:4.60
#> Max. :7.000 Max. :5.10
#> ------------------------------------------------------------
#> Species: virginica
#> Sepal.Length Petal.Length
#> Min. :4.900 Min. :4.500
#> 1st Qu.:6.225 1st Qu.:5.100
#> Median :6.500 Median :5.550
#> Mean :6.588 Mean :5.552
#> 3rd Qu.:6.900 3rd Qu.:5.875
#> Max. :7.900 Max. :6.900
daggregate(iris, log(Sepal.Length)+I(Petal.Length>1.5) ~ Species,
fun=summary)
#> Species: setosa
#> log(Sepal.Length) I(Petal.Length > 1.5)
#> Min. :1.459 Mode :logical
#> 1st Qu.:1.569 FALSE:37
#> Median :1.609 TRUE :13
#> Mean :1.608
#> 3rd Qu.:1.649
#> Max. :1.758
#> ------------------------------------------------------------
#> Species: versicolor
#> log(Sepal.Length) I(Petal.Length > 1.5)
#> Min. :1.589 Mode:logical
#> 1st Qu.:1.723 TRUE:50
#> Median :1.775
#> Mean :1.777
#> 3rd Qu.:1.841
#> Max. :1.946
#> ------------------------------------------------------------
#> Species: virginica
#> log(Sepal.Length) I(Petal.Length > 1.5)
#> Min. :1.589 Mode:logical
#> 1st Qu.:1.829 TRUE:50
#> Median :1.872
#> Mean :1.881
#> 3rd Qu.:1.932
#> Max. :2.067
daggregate(iris, "*Length*", x="Species", fun=head)
#> Species: setosa
#> Sepal.Length Petal.Length
#> 1 5.1 1.4
#> 2 4.9 1.4
#> 3 4.7 1.3
#> 4 4.6 1.5
#> 5 5.0 1.4
#> 6 5.4 1.7
#> ------------------------------------------------------------
#> Species: versicolor
#> Sepal.Length Petal.Length
#> 51 7.0 4.7
#> 52 6.4 4.5
#> 53 6.9 4.9
#> 54 5.5 4.0
#> 55 6.5 4.6
#> 56 5.7 4.5
#> ------------------------------------------------------------
#> Species: virginica
#> Sepal.Length Petal.Length
#> 101 6.3 6.0
#> 102 5.8 5.1
#> 103 7.1 5.9
#> 104 6.3 5.6
#> 105 6.5 5.8
#> 106 7.6 6.6
daggregate(iris, "^.e.al", x="Species", fun=tail, regex=TRUE)
#> Species: setosa
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 45 5.1 3.8 1.9 0.4
#> 46 4.8 3.0 1.4 0.3
#> 47 5.1 3.8 1.6 0.2
#> 48 4.6 3.2 1.4 0.2
#> 49 5.3 3.7 1.5 0.2
#> 50 5.0 3.3 1.4 0.2
#> ------------------------------------------------------------
#> Species: versicolor
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 95 5.6 2.7 4.2 1.3
#> 96 5.7 3.0 4.2 1.2
#> 97 5.7 2.9 4.2 1.3
#> 98 6.2 2.9 4.3 1.3
#> 99 5.1 2.5 3.0 1.1
#> 100 5.7 2.8 4.1 1.3
#> ------------------------------------------------------------
#> Species: virginica
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 145 6.7 3.3 5.7 2.5
#> 146 6.7 3.0 5.2 2.3
#> 147 6.3 2.5 5.0 1.9
#> 148 6.5 3.0 5.2 2.0
#> 149 6.2 3.4 5.4 2.3
#> 150 5.9 3.0 5.1 1.8
daggregate(sTRACE, status~ diabetes, fun=table)
#> diabetes: 0
#> status
#> 0 7 9
#> 220 5 228
#> ------------------------------------------------------------
#> diabetes: 1
#> status
#> 0 9
#> 16 31
daggregate(sTRACE, status~ diabetes+sex, fun=table)
#> diabetes: 0
#> sex: 0
#> status
#> 0 9
#> 63 80
#> ------------------------------------------------------------
#> diabetes: 1
#> sex: 0
#> status
#> 0 9
#> 6 13
#> ------------------------------------------------------------
#> diabetes: 0
#> sex: 1
#> status
#> 0 7 9
#> 157 5 148
#> ------------------------------------------------------------
#> diabetes: 1
#> sex: 1
#> status
#> 0 9
#> 10 18
daggregate(sTRACE, status + diabetes+sex ~ vf+I(wmi>1.4), fun=table)
#> vf: 0
#> I(wmi > 1.4): FALSE
#> , , sex = 0
#>
#> diabetes
#> status 0 1
#> 0 21 3
#> 7 0 0
#> 9 39 8
#>
#> , , sex = 1
#>
#> diabetes
#> status 0 1
#> 0 48 6
#> 7 1 0
#> 9 94 14
#>
#> ------------------------------------------------------------
#> vf: 1
#> I(wmi > 1.4): FALSE
#> , , sex = 0
#>
#> diabetes
#> status 0 1
#> 0 2 0
#> 9 5 1
#>
#> , , sex = 1
#>
#> diabetes
#> status 0 1
#> 0 4 0
#> 9 8 0
#>
#> ------------------------------------------------------------
#> vf: 0
#> I(wmi > 1.4): TRUE
#> , , sex = 0
#>
#> diabetes
#> status 0 1
#> 0 38 3
#> 7 0 0
#> 9 34 4
#>
#> , , sex = 1
#>
#> diabetes
#> status 0 1
#> 0 102 4
#> 7 4 0
#> 9 44 4
#>
#> ------------------------------------------------------------
#> vf: 1
#> I(wmi > 1.4): TRUE
#> , , sex = 0
#>
#> diabetes
#> status 0
#> 0 2
#> 9 2
#>
#> , , sex = 1
#>
#> diabetes
#> status 0
#> 0 3
#> 9 2
#>
daggregate(iris, "^.e.al", x="Species",regex=TRUE)
#> Species: setosa
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> Min. :4.300 Min. :2.300 Min. :1.000 Min. :0.100
#> 1st Qu.:4.800 1st Qu.:3.200 1st Qu.:1.400 1st Qu.:0.200
#> Median :5.000 Median :3.400 Median :1.500 Median :0.200
#> Mean :5.006 Mean :3.428 Mean :1.462 Mean :0.246
#> 3rd Qu.:5.200 3rd Qu.:3.675 3rd Qu.:1.575 3rd Qu.:0.300
#> Max. :5.800 Max. :4.400 Max. :1.900 Max. :0.600
#> ------------------------------------------------------------
#> Species: versicolor
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> Min. :4.900 Min. :2.000 Min. :3.00 Min. :1.000
#> 1st Qu.:5.600 1st Qu.:2.525 1st Qu.:4.00 1st Qu.:1.200
#> Median :5.900 Median :2.800 Median :4.35 Median :1.300
#> Mean :5.936 Mean :2.770 Mean :4.26 Mean :1.326
#> 3rd Qu.:6.300 3rd Qu.:3.000 3rd Qu.:4.60 3rd Qu.:1.500
#> Max. :7.000 Max. :3.400 Max. :5.10 Max. :1.800
#> ------------------------------------------------------------
#> Species: virginica
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> Min. :4.900 Min. :2.200 Min. :4.500 Min. :1.400
#> 1st Qu.:6.225 1st Qu.:2.800 1st Qu.:5.100 1st Qu.:1.800
#> Median :6.500 Median :3.000 Median :5.550 Median :2.000
#> Mean :6.588 Mean :2.974 Mean :5.552 Mean :2.026
#> 3rd Qu.:6.900 3rd Qu.:3.175 3rd Qu.:5.875 3rd Qu.:2.300
#> Max. :7.900 Max. :3.800 Max. :6.900 Max. :2.500
dlist(iris,Petal.Length+Sepal.Length ~ Species |Petal.Length>1.3 & Sepal.Length>5,
n=list(1:3,-(3:1)))
#> Species: setosa
#> Petal.Length Sepal.Length
#> 1 1.4 5.1
#> 6 1.7 5.4
#> 11 1.5 5.4
#> ---
#> 45 1.9 5.1
#> 47 1.6 5.1
#> 49 1.5 5.3
#> ------------------------------------------------------------
#> Species: versicolor
#> Petal.Length Sepal.Length
#> 51 4.7 7.0
#> 52 4.5 6.4
#> 53 4.9 6.9
#> ---
#> 98 4.3 6.2
#> 99 3.0 5.1
#> 100 4.1 5.7
#> ------------------------------------------------------------
#> Species: virginica
#> Petal.Length Sepal.Length
#> 101 6.0 6.3
#> 102 5.1 5.8
#> 103 5.9 7.1
#> ---
#> 148 5.2 6.5
#> 149 5.4 6.2
#> 150 5.1 5.9
daggregate(iris, I(Sepal.Length>7)~Species | I(Petal.Length>1.5))
#> Species: setosa
#> I(Sepal.Length > 7)
#> Mode :logical
#> FALSE:13
#> ------------------------------------------------------------
#> Species: versicolor
#> I(Sepal.Length > 7)
#> Mode :logical
#> FALSE:50
#> ------------------------------------------------------------
#> Species: virginica
#> I(Sepal.Length > 7)
#> Mode :logical
#> FALSE:38
#> TRUE :12
daggregate(iris, I(Sepal.Length>7)~Species | I(Petal.Length>1.5),
fun=table)
#> Species: setosa
#> I(Sepal.Length > 7)
#> FALSE
#> 13
#> ------------------------------------------------------------
#> Species: versicolor
#> I(Sepal.Length > 7)
#> FALSE
#> 50
#> ------------------------------------------------------------
#> Species: virginica
#> I(Sepal.Length > 7)
#> FALSE TRUE
#> 38 12
dsum(iris, .~Species, matrix=TRUE, missing=TRUE)
#> Species Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 1 setosa 250.3 171.4 73.1 12.3
#> 2 versicolor 296.8 138.5 213.0 66.3
#> 3 virginica 329.4 148.7 277.6 101.3
par(mfrow=c(1,2))
data(iris)
drename(iris) <- ~.
daggregate(iris,'sepal*'~species|species!="virginica",fun=plot)
#> species: setosa
#> NULL
#> ------------------------------------------------------------
#> species: versicolor
#> NULL
#> ------------------------------------------------------------
#> species: virginica
#> NULL
daggregate(iris,'sepal*'~I(as.numeric(species))|I(as.numeric(species))!=1,fun=summary)
#> I(as.numeric(species)): 2
#> sepal.length sepal.width
#> Min. :4.900 Min. :2.000
#> 1st Qu.:5.600 1st Qu.:2.525
#> Median :5.900 Median :2.800
#> Mean :5.936 Mean :2.770
#> 3rd Qu.:6.300 3rd Qu.:3.000
#> Max. :7.000 Max. :3.400
#> ------------------------------------------------------------
#> I(as.numeric(species)): 3
#> sepal.length sepal.width
#> Min. :4.900 Min. :2.200
#> 1st Qu.:6.225 1st Qu.:2.800
#> Median :6.500 Median :3.000
#> Mean :6.588 Mean :2.974
#> 3rd Qu.:6.900 3rd Qu.:3.175
#> Max. :7.900 Max. :3.800
dnumeric(iris) <- ~species
daggregate(iris,'sepal*'~species.n|species.n!=1,fun=summary)
#> species.n: 2
#> sepal.length sepal.width
#> Min. :4.900 Min. :2.000
#> 1st Qu.:5.600 1st Qu.:2.525
#> Median :5.900 Median :2.800
#> Mean :5.936 Mean :2.770
#> 3rd Qu.:6.300 3rd Qu.:3.000
#> Max. :7.000 Max. :3.400
#> ------------------------------------------------------------
#> species.n: 3
#> sepal.length sepal.width
#> Min. :4.900 Min. :2.200
#> 1st Qu.:6.225 1st Qu.:2.800
#> Median :6.500 Median :3.000
#> Mean :6.588 Mean :2.974
#> 3rd Qu.:6.900 3rd Qu.:3.175
#> Max. :7.900 Max. :3.800