aggregating for for data frames

daggregate(
  data,
  y = NULL,
  x = NULL,
  subset,
  ...,
  fun = "summary",
  regex = mets.options()$regex,
  missing = FALSE,
  remove.empty = FALSE,
  matrix = FALSE,
  silent = FALSE,
  na.action = na.pass,
  convert = NULL
)

Arguments

data

data.frame

y

name of variable, or formula, or names of variables on data frame.

x

name of variable, or formula, or names of variables on data frame.

subset

subset expression

...

additional arguments to lower level functions

fun

function defining aggregation

regex

interpret x,y as regular expressions

missing

Missing used in groups (x)

remove.empty

remove empty groups from output

matrix

if TRUE a matrix is returned instead of an array

silent

suppress messages

na.action

How model.frame deals with 'NA's

convert

if TRUE try to coerce result into matrix. Can also be a user-defined function

Examples

data("sTRACE")
daggregate(iris, "^.e.al", x="Species", fun=cor, regex=TRUE)
#> Species: setosa
#>              Sepal.Length Sepal.Width Petal.Length Petal.Width
#> Sepal.Length    1.0000000   0.7425467    0.2671758   0.2780984
#> Sepal.Width     0.7425467   1.0000000    0.1777000   0.2327520
#> Petal.Length    0.2671758   0.1777000    1.0000000   0.3316300
#> Petal.Width     0.2780984   0.2327520    0.3316300   1.0000000
#> ------------------------------------------------------------ 
#> Species: versicolor
#>              Sepal.Length Sepal.Width Petal.Length Petal.Width
#> Sepal.Length    1.0000000   0.5259107    0.7540490   0.5464611
#> Sepal.Width     0.5259107   1.0000000    0.5605221   0.6639987
#> Petal.Length    0.7540490   0.5605221    1.0000000   0.7866681
#> Petal.Width     0.5464611   0.6639987    0.7866681   1.0000000
#> ------------------------------------------------------------ 
#> Species: virginica
#>              Sepal.Length Sepal.Width Petal.Length Petal.Width
#> Sepal.Length    1.0000000   0.4572278    0.8642247   0.2811077
#> Sepal.Width     0.4572278   1.0000000    0.4010446   0.5377280
#> Petal.Length    0.8642247   0.4010446    1.0000000   0.3221082
#> Petal.Width     0.2811077   0.5377280    0.3221082   1.0000000
daggregate(iris, Sepal.Length+Petal.Length ~Species, fun=summary)
#> Species: setosa
#>   Sepal.Length    Petal.Length  
#>  Min.   :4.300   Min.   :1.000  
#>  1st Qu.:4.800   1st Qu.:1.400  
#>  Median :5.000   Median :1.500  
#>  Mean   :5.006   Mean   :1.462  
#>  3rd Qu.:5.200   3rd Qu.:1.575  
#>  Max.   :5.800   Max.   :1.900  
#> ------------------------------------------------------------ 
#> Species: versicolor
#>   Sepal.Length    Petal.Length 
#>  Min.   :4.900   Min.   :3.00  
#>  1st Qu.:5.600   1st Qu.:4.00  
#>  Median :5.900   Median :4.35  
#>  Mean   :5.936   Mean   :4.26  
#>  3rd Qu.:6.300   3rd Qu.:4.60  
#>  Max.   :7.000   Max.   :5.10  
#> ------------------------------------------------------------ 
#> Species: virginica
#>   Sepal.Length    Petal.Length  
#>  Min.   :4.900   Min.   :4.500  
#>  1st Qu.:6.225   1st Qu.:5.100  
#>  Median :6.500   Median :5.550  
#>  Mean   :6.588   Mean   :5.552  
#>  3rd Qu.:6.900   3rd Qu.:5.875  
#>  Max.   :7.900   Max.   :6.900  
daggregate(iris, log(Sepal.Length)+I(Petal.Length>1.5) ~ Species,
                 fun=summary)
#> Species: setosa
#>  log(Sepal.Length) I(Petal.Length > 1.5)
#>  Min.   :1.459     Mode :logical        
#>  1st Qu.:1.569     FALSE:37             
#>  Median :1.609     TRUE :13             
#>  Mean   :1.608                          
#>  3rd Qu.:1.649                          
#>  Max.   :1.758                          
#> ------------------------------------------------------------ 
#> Species: versicolor
#>  log(Sepal.Length) I(Petal.Length > 1.5)
#>  Min.   :1.589     Mode:logical         
#>  1st Qu.:1.723     TRUE:50              
#>  Median :1.775                          
#>  Mean   :1.777                          
#>  3rd Qu.:1.841                          
#>  Max.   :1.946                          
#> ------------------------------------------------------------ 
#> Species: virginica
#>  log(Sepal.Length) I(Petal.Length > 1.5)
#>  Min.   :1.589     Mode:logical         
#>  1st Qu.:1.829     TRUE:50              
#>  Median :1.872                          
#>  Mean   :1.881                          
#>  3rd Qu.:1.932                          
#>  Max.   :2.067                          
daggregate(iris, "*Length*", x="Species", fun=head)
#> Species: setosa
#>   Sepal.Length Petal.Length
#> 1          5.1          1.4
#> 2          4.9          1.4
#> 3          4.7          1.3
#> 4          4.6          1.5
#> 5          5.0          1.4
#> 6          5.4          1.7
#> ------------------------------------------------------------ 
#> Species: versicolor
#>    Sepal.Length Petal.Length
#> 51          7.0          4.7
#> 52          6.4          4.5
#> 53          6.9          4.9
#> 54          5.5          4.0
#> 55          6.5          4.6
#> 56          5.7          4.5
#> ------------------------------------------------------------ 
#> Species: virginica
#>     Sepal.Length Petal.Length
#> 101          6.3          6.0
#> 102          5.8          5.1
#> 103          7.1          5.9
#> 104          6.3          5.6
#> 105          6.5          5.8
#> 106          7.6          6.6
daggregate(iris, "^.e.al", x="Species", fun=tail, regex=TRUE)
#> Species: setosa
#>    Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 45          5.1         3.8          1.9         0.4
#> 46          4.8         3.0          1.4         0.3
#> 47          5.1         3.8          1.6         0.2
#> 48          4.6         3.2          1.4         0.2
#> 49          5.3         3.7          1.5         0.2
#> 50          5.0         3.3          1.4         0.2
#> ------------------------------------------------------------ 
#> Species: versicolor
#>     Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 95           5.6         2.7          4.2         1.3
#> 96           5.7         3.0          4.2         1.2
#> 97           5.7         2.9          4.2         1.3
#> 98           6.2         2.9          4.3         1.3
#> 99           5.1         2.5          3.0         1.1
#> 100          5.7         2.8          4.1         1.3
#> ------------------------------------------------------------ 
#> Species: virginica
#>     Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 145          6.7         3.3          5.7         2.5
#> 146          6.7         3.0          5.2         2.3
#> 147          6.3         2.5          5.0         1.9
#> 148          6.5         3.0          5.2         2.0
#> 149          6.2         3.4          5.4         2.3
#> 150          5.9         3.0          5.1         1.8
daggregate(sTRACE, status~ diabetes, fun=table)
#> diabetes: 0
#> status
#>   0   7   9 
#> 220   5 228 
#> ------------------------------------------------------------ 
#> diabetes: 1
#> status
#>  0  9 
#> 16 31 
daggregate(sTRACE, status~ diabetes+sex, fun=table)
#> diabetes: 0
#> sex: 0
#> status
#>  0  9 
#> 63 80 
#> ------------------------------------------------------------ 
#> diabetes: 1
#> sex: 0
#> status
#>  0  9 
#>  6 13 
#> ------------------------------------------------------------ 
#> diabetes: 0
#> sex: 1
#> status
#>   0   7   9 
#> 157   5 148 
#> ------------------------------------------------------------ 
#> diabetes: 1
#> sex: 1
#> status
#>  0  9 
#> 10 18 
daggregate(sTRACE, status + diabetes+sex ~ vf+I(wmi>1.4), fun=table)
#> vf: 0
#> I(wmi > 1.4): FALSE
#> , , sex = 0
#> 
#>       diabetes
#> status  0  1
#>      0 21  3
#>      7  0  0
#>      9 39  8
#> 
#> , , sex = 1
#> 
#>       diabetes
#> status  0  1
#>      0 48  6
#>      7  1  0
#>      9 94 14
#> 
#> ------------------------------------------------------------ 
#> vf: 1
#> I(wmi > 1.4): FALSE
#> , , sex = 0
#> 
#>       diabetes
#> status 0 1
#>      0 2 0
#>      9 5 1
#> 
#> , , sex = 1
#> 
#>       diabetes
#> status 0 1
#>      0 4 0
#>      9 8 0
#> 
#> ------------------------------------------------------------ 
#> vf: 0
#> I(wmi > 1.4): TRUE
#> , , sex = 0
#> 
#>       diabetes
#> status   0   1
#>      0  38   3
#>      7   0   0
#>      9  34   4
#> 
#> , , sex = 1
#> 
#>       diabetes
#> status   0   1
#>      0 102   4
#>      7   4   0
#>      9  44   4
#> 
#> ------------------------------------------------------------ 
#> vf: 1
#> I(wmi > 1.4): TRUE
#> , , sex = 0
#> 
#>       diabetes
#> status 0
#>      0 2
#>      9 2
#> 
#> , , sex = 1
#> 
#>       diabetes
#> status 0
#>      0 3
#>      9 2
#> 
daggregate(iris, "^.e.al", x="Species",regex=TRUE)
#> Species: setosa
#>   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
#>  Min.   :4.300   Min.   :2.300   Min.   :1.000   Min.   :0.100  
#>  1st Qu.:4.800   1st Qu.:3.200   1st Qu.:1.400   1st Qu.:0.200  
#>  Median :5.000   Median :3.400   Median :1.500   Median :0.200  
#>  Mean   :5.006   Mean   :3.428   Mean   :1.462   Mean   :0.246  
#>  3rd Qu.:5.200   3rd Qu.:3.675   3rd Qu.:1.575   3rd Qu.:0.300  
#>  Max.   :5.800   Max.   :4.400   Max.   :1.900   Max.   :0.600  
#> ------------------------------------------------------------ 
#> Species: versicolor
#>   Sepal.Length    Sepal.Width     Petal.Length   Petal.Width   
#>  Min.   :4.900   Min.   :2.000   Min.   :3.00   Min.   :1.000  
#>  1st Qu.:5.600   1st Qu.:2.525   1st Qu.:4.00   1st Qu.:1.200  
#>  Median :5.900   Median :2.800   Median :4.35   Median :1.300  
#>  Mean   :5.936   Mean   :2.770   Mean   :4.26   Mean   :1.326  
#>  3rd Qu.:6.300   3rd Qu.:3.000   3rd Qu.:4.60   3rd Qu.:1.500  
#>  Max.   :7.000   Max.   :3.400   Max.   :5.10   Max.   :1.800  
#> ------------------------------------------------------------ 
#> Species: virginica
#>   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
#>  Min.   :4.900   Min.   :2.200   Min.   :4.500   Min.   :1.400  
#>  1st Qu.:6.225   1st Qu.:2.800   1st Qu.:5.100   1st Qu.:1.800  
#>  Median :6.500   Median :3.000   Median :5.550   Median :2.000  
#>  Mean   :6.588   Mean   :2.974   Mean   :5.552   Mean   :2.026  
#>  3rd Qu.:6.900   3rd Qu.:3.175   3rd Qu.:5.875   3rd Qu.:2.300  
#>  Max.   :7.900   Max.   :3.800   Max.   :6.900   Max.   :2.500  
dlist(iris,Petal.Length+Sepal.Length ~ Species |Petal.Length>1.3 & Sepal.Length>5,
            n=list(1:3,-(3:1)))
#> Species: setosa
#>     Petal.Length Sepal.Length
#> 1   1.4          5.1         
#> 6   1.7          5.4         
#> 11  1.5          5.4         
#> ---                          
#> 45  1.9          5.1         
#> 47  1.6          5.1         
#> 49  1.5          5.3         
#> ------------------------------------------------------------ 
#> Species: versicolor
#>     Petal.Length Sepal.Length
#> 51  4.7          7.0         
#> 52  4.5          6.4         
#> 53  4.9          6.9         
#> ---                          
#> 98  4.3          6.2         
#> 99  3.0          5.1         
#> 100 4.1          5.7         
#> ------------------------------------------------------------ 
#> Species: virginica
#>     Petal.Length Sepal.Length
#> 101 6.0          6.3         
#> 102 5.1          5.8         
#> 103 5.9          7.1         
#> ---                          
#> 148 5.2          6.5         
#> 149 5.4          6.2         
#> 150 5.1          5.9         
daggregate(iris, I(Sepal.Length>7)~Species | I(Petal.Length>1.5))
#> Species: setosa
#>  I(Sepal.Length > 7)
#>  Mode :logical      
#>  FALSE:13           
#> ------------------------------------------------------------ 
#> Species: versicolor
#>  I(Sepal.Length > 7)
#>  Mode :logical      
#>  FALSE:50           
#> ------------------------------------------------------------ 
#> Species: virginica
#>  I(Sepal.Length > 7)
#>  Mode :logical      
#>  FALSE:38           
#>  TRUE :12           
daggregate(iris, I(Sepal.Length>7)~Species | I(Petal.Length>1.5),
                 fun=table)
#> Species: setosa
#> I(Sepal.Length > 7)
#> FALSE 
#>    13 
#> ------------------------------------------------------------ 
#> Species: versicolor
#> I(Sepal.Length > 7)
#> FALSE 
#>    50 
#> ------------------------------------------------------------ 
#> Species: virginica
#> I(Sepal.Length > 7)
#> FALSE  TRUE 
#>    38    12 

dsum(iris, .~Species, matrix=TRUE, missing=TRUE)
#>      Species Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 1     setosa        250.3       171.4         73.1        12.3
#> 2 versicolor        296.8       138.5        213.0        66.3
#> 3  virginica        329.4       148.7        277.6       101.3

par(mfrow=c(1,2))
data(iris)
drename(iris) <- ~.
daggregate(iris,'sepal*'~species|species!="virginica",fun=plot)

#> species: setosa
#> NULL
#> ------------------------------------------------------------ 
#> species: versicolor
#> NULL
#> ------------------------------------------------------------ 
#> species: virginica
#> NULL
daggregate(iris,'sepal*'~I(as.numeric(species))|I(as.numeric(species))!=1,fun=summary)
#> I(as.numeric(species)): 2
#>   sepal.length    sepal.width   
#>  Min.   :4.900   Min.   :2.000  
#>  1st Qu.:5.600   1st Qu.:2.525  
#>  Median :5.900   Median :2.800  
#>  Mean   :5.936   Mean   :2.770  
#>  3rd Qu.:6.300   3rd Qu.:3.000  
#>  Max.   :7.000   Max.   :3.400  
#> ------------------------------------------------------------ 
#> I(as.numeric(species)): 3
#>   sepal.length    sepal.width   
#>  Min.   :4.900   Min.   :2.200  
#>  1st Qu.:6.225   1st Qu.:2.800  
#>  Median :6.500   Median :3.000  
#>  Mean   :6.588   Mean   :2.974  
#>  3rd Qu.:6.900   3rd Qu.:3.175  
#>  Max.   :7.900   Max.   :3.800  

dnumeric(iris) <- ~species
daggregate(iris,'sepal*'~species.n|species.n!=1,fun=summary)
#> species.n: 2
#>   sepal.length    sepal.width   
#>  Min.   :4.900   Min.   :2.000  
#>  1st Qu.:5.600   1st Qu.:2.525  
#>  Median :5.900   Median :2.800  
#>  Mean   :5.936   Mean   :2.770  
#>  3rd Qu.:6.300   3rd Qu.:3.000  
#>  Max.   :7.000   Max.   :3.400  
#> ------------------------------------------------------------ 
#> species.n: 3
#>   sepal.length    sepal.width   
#>  Min.   :4.900   Min.   :2.200  
#>  1st Qu.:6.225   1st Qu.:2.800  
#>  Median :6.500   Median :3.000  
#>  Mean   :6.588   Mean   :2.974  
#>  3rd Qu.:6.900   3rd Qu.:3.175  
#>  Max.   :7.900   Max.   :3.800