R/recurrent.marginal.R
covarianceRecurrent.Rd
Estimation of probability of more that k events for recurrent events process where there is terminal event
covarianceRecurrent(
data,
type1,
type2,
status = "status",
death = "death",
start = "start",
stop = "stop",
id = "id",
names.count = "Count"
)
data-frame
type of first event (code) related to status
type of second event (code) related to status
name of status
name of death indicator
start stop call of Hist() of prodlim
start stop call of Hist() of prodlim
id
name of count for number of previous event of different types, here generated by count.history()
Scheike, Eriksson, Tribler (2019) The mean, variance and correlation for bivariate recurrent events with a terminal event, JRSS-C
########################################
## getting some data to work on
########################################
data(base1cumhaz)
data(base4cumhaz)
data(drcumhaz)
dr <- drcumhaz
base1 <- base1cumhaz
base4 <- base4cumhaz
rr <- simRecurrentII(1000,base1,cumhaz2=base4,death.cumhaz=dr)
rr <- count.history(rr)
rr$strata <- 1
dtable(rr,~death+status)
#>
#> status 0 1 2
#> death
#> 0 154 2998 447
#> 1 846 0 0
covrp <- covarianceRecurrent(rr,1,2,status="status",death="death",
start="entry",stop="time",id="id",names.count="Count")
par(mfrow=c(1,3))
plot(covrp)
### with strata, each strata in matrix column, provides basis for fast Bootstrap
covrpS <- covarianceRecurrentS(rr,1,2,status="status",death="death",
start="entry",stop="time",strata="strata",id="id",names.count="Count")