Liability-threshold model for twin data
Usage
bptwin(
x,
data,
id,
zyg,
DZ,
group = NULL,
num = NULL,
weights = NULL,
weights.fun = function(x) ifelse(any(x <= 0), 0, max(x)),
strata = NULL,
messages = 1,
control = list(trace = 0),
type = "ace",
eqmean = TRUE,
pairs.only = FALSE,
samecens = TRUE,
allmarg = samecens & !is.null(weights),
stderr = TRUE,
robustvar = TRUE,
p,
indiv = FALSE,
constrain,
varlink,
...
)Arguments
- x
Formula specifying effects of covariates on the response.
- data
data.framewith one observation pr row. In addition a column with the zygosity (DZ or MZ given as a factor) of each individual much be specified as well as a twin id variable giving a unique pair of numbers/factors to each twin pair.- id
The name of the column in the dataset containing the twin-id variable.
- zyg
The name of the column in the dataset containing the zygosity variable.
- DZ
Character defining the level in the zyg variable corresponding to the dyzogitic twins.
- group
Optional. Variable name defining group for interaction analysis (e.g., gender)
- num
Optional twin number variable
- weights
Weight matrix if needed by the chosen estimator (IPCW)
- weights.fun
Function defining a single weight each individual/cluster
- strata
Strata
- messages
Control amount of messages shown
- control
Control argument parsed on to the optimization routine. Starting values may be parsed as '
start'.- type
Character defining the type of analysis to be performed. Should be a subset of "acde" (additive genetic factors, common environmental factors, dominant genetic factors, unique environmental factors).
- eqmean
Equal means (with type="cor")?
- pairs.only
Include complete pairs only?
- samecens
Same censoring
- allmarg
Should all marginal terms be included
- stderr
Should standard errors be calculated?
- robustvar
If TRUE robust (sandwich) variance estimates of the variance are used
- p
Parameter vector p in which to evaluate log-Likelihood and score function
- indiv
If TRUE the score and log-Likelihood contribution of each twin-pair
- constrain
Development argument
- varlink
Link function for variance parameters
- ...
Additional arguments to lower level functions
See also
twinlm, twinlm.time, twinlm.strata, twinsim
Examples
data(twinstut)
b0 <- bptwin(stutter~sex,
data=droplevels(
subset(twinstut, zyg%in%c("mz","dz") & tvparnr<5e3)
),
id="tvparnr",zyg="zyg",DZ="dz",type="ae")
summary(b0)
#>
#> Estimate Std.Err Z p-value
#> (Intercept) -3.84320 0.67034 -5.7333 9.852e-09 ***
#> sexmale 0.80018 0.19370 4.1310 3.612e-05 ***
#> log(var(A)) 1.12281 0.46483 2.4155 0.01571 *
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Total MZ/DZ Complete pairs MZ/DZ
#> 1483/2934 542/897
#>
#> Estimate 2.5% 97.5%
#> A 0.75451 0.58576 0.92326
#> E 0.24549 0.07674 0.41424
#> MZ Tetrachoric Cor 0.75451 0.53102 0.87986
#> DZ Tetrachoric Cor 0.37726 0.28992 0.45836
#>
#> MZ:
#> Estimate 2.5% 97.5%
#> Concordance 0.01126 0.00629 0.02008
#> Casewise Concordance 0.39595 0.23173 0.58753
#> Marginal 0.02844 0.02205 0.03661
#> Rel.Recur.Risk 13.92073 7.23136 20.61010
#> log(OR) 3.59486 2.53322 4.65650
#> DZ:
#> Estimate 2.5% 97.5%
#> Concordance 0.00378 0.00230 0.00621
#> Casewise Concordance 0.13291 0.09607 0.18105
#> Marginal 0.02844 0.02205 0.03661
#> Rel.Recur.Risk 4.67300 3.32186 6.02414
#> log(OR) 1.77247 1.40907 2.13587
#>
#> Estimate 2.5% 97.5%
#> Broad-sense heritability 0.75451 0.58576 0.92326
#>
