
Additive Random effects model for competing risks data for polygenetic modelling
Source:R/cor.R
Grandom.cif.RdFits a random effects model describing the dependence in the cumulative incidence curves for subjects within a cluster. Given the gamma distributed random effects it is assumed that the cumulative incidence curves are indpendent, and that the marginal cumulative incidence curves are on additive form $$ P(T \leq t, cause=1 | x,z) = P_1(t,x,z) = 1- exp( -x^T A(t) - t z^T \beta) $$
Usage
Grandom.cif(
cif,
data,
cause = NULL,
cif2 = NULL,
times = NULL,
cause1 = 1,
cause2 = 1,
cens.code = NULL,
cens.model = "KM",
Nit = 40,
detail = 0,
clusters = NULL,
theta = NULL,
theta.des = NULL,
weights = NULL,
step = 1,
sym = 0,
same.cens = FALSE,
censoring.weights = NULL,
silent = 1,
var.link = 0,
score.method = "nr",
entry = NULL,
estimator = 1,
trunkp = 1,
admin.cens = NULL,
random.design = NULL,
...
)Arguments
- cif
a model object from the timereg::comp.risk function with the marginal cumulative incidence of cause2, i.e., the event that is conditioned on, and whose odds the comparision is made with respect to
- data
a data.frame with the variables.
- cause
specifies the causes related to the death times, the value cens.code is the censoring value.
- cif2
specificies model for cause2 if different from cause1.
- times
time points
- cause1
cause of first coordinate.
- cause2
cause of second coordinate.
- cens.code
specificies the code for the censoring if NULL then uses the one from the marginal cif model.
- cens.model
specified which model to use for the ICPW, KM is Kaplan-Meier alternatively it may be "cox"
- Nit
number of iterations for Newton-Raphson algorithm.
- detail
if 0 no details are printed during iterations, if 1 details are given.
- clusters
specifies the cluster structure.
- theta
specifies starting values for the cross-odds-ratio parameters of the model.
- theta.des
specifies a regression design for the cross-odds-ratio parameters.
- weights
weights for score equations.
- step
specifies the step size for the Newton-Raphson algorith.m
- sym
1 for symmetri and 0 otherwise
- same.cens
if true then censoring within clusters are assumed to be the same variable, default is independent censoring.
- censoring.weights
Censoring probabilities
- silent
debug information
- var.link
if var.link=1 then var is on log-scale.
- score.method
default uses "nlminb" optimzer, alternatively, use the "nr" algorithm.
- entry
entry-age in case of delayed entry. Then two causes must be given.
- estimator
estimator
- trunkp
gives probability of survival for delayed entry, and related to entry-ages given above.
- admin.cens
Administrative censoring
- random.design
specifies a regression design of 0/1's for the random effects.
- ...
extra arguments.
Value
returns an object of type 'random.cif'. With the following arguments:
- theta
estimate of parameters of model.
- var.theta
variance for gamma.
- hess
the derivative of the used score.
- score
scores at final stage.
- theta.iid
matrix of iid decomposition of parametric effects.
Details
We allow a regression structure for the indenpendent gamma distributed random effects and their variances that may depend on cluster covariates.
random.design specificies the random effects for each subject within a cluster. This is a matrix of 1's and 0's with dimension n x d. With d random effects. For a cluster with two subjects, we let the random.design rows be \(v_1\) and \(v_2\). Such that the random effects for subject 1 is $$v_1^T (Z_1,...,Z_d)$$, for d random effects. Each random effect has an associated parameter \((\lambda_1,...,\lambda_d)\). By construction subjects 1's random effect are Gamma distributed with mean \(\lambda_1/v_1^T \lambda\) and variance \(\lambda_1/(v_1^T \lambda)^2\). Note that the random effect \(v_1^T (Z_1,...,Z_d)\) has mean 1 and variance \(1/(v_1^T \lambda)\).
The parameters \((\lambda_1,...,\lambda_d)\) are related to the parameters of the model by a regression construction \(pard\) (d x k), that links the \(d\) \(\lambda\) parameters with the (k) underlying \(\theta\) parameters $$ \lambda = pard \theta $$
References
A Semiparametric Random Effects Model for Multivariate Competing Risks Data, Scheike, Zhang, Sun, Jensen (2010), Biometrika.
Cross odds ratio Modelling of dependence for Multivariate Competing Risks Data, Scheike and Sun (2013), Biostatitistics.
Scheike, Holst, Hjelmborg (2014), LIDA, Estimating heritability for cause specific hazards based on twin data
Examples
## Reduce Ex.Timings
d <- simnordic.random(5000,delayed=TRUE,
cordz=1.0,cormz=2,lam0=0.3,country=TRUE)
times <- seq(50,90,by=10)
addm <- timereg::comp.risk(Event(time,cause)~-1+factor(country)+cluster(id),data=d,
times=times,cause=1,max.clust=NULL)
### making group indidcator
mm <- model.matrix(~-1+factor(zyg),d)
out1m<-random.cif(addm,data=d,cause1=1,cause2=1,theta=1,
theta.des=mm,same.cens=TRUE)
summary(out1m)
#> Random effect variance for variation due to clusters
#>
#> Cause 1 and cause 1
#>
#>
#> Coef. SE z P-val Cross odds ratio
#> factor(zyg)MZ 2.7194473 0.3717233 7.315784 2.557954e-13 3.719447
#> factor(zyg)DZ 0.6265788 0.1631032 3.841610 1.222299e-04 1.626579
#> SE
#> factor(zyg)MZ 0.3717233
#> factor(zyg)DZ 0.1631032
## this model can also be formulated as a random effects model
## but with different parameters
out2m<-Grandom.cif(addm,data=d,cause1=1,cause2=1,
theta=c(0.5,1),step=1.0,
random.design=mm,same.cens=TRUE)
summary(out2m)
#> Random effect parameters for additive gamma random effects
#>
#> Cause 1 and cause 1
#>
#>
#> Coef. SE z P-val
#> [1,] 0.368 0.0503 7.32 2.56e-13
#> [2,] 1.600 0.4150 3.84 1.22e-04
#> $estimate
#> Coef. SE z P-val
#> [1,] 0.368 0.0503 7.32 2.56e-13
#> [2,] 1.600 0.4150 3.84 1.22e-04
#>
#> $h
#> Estimate Std.Err 2.5% 97.5% P-value
#> p1 0.2304 0.06774 0.09763 0.3632 0.0006709
#> p2 1.0000 0.00000 1.00000 1.0000 0.0000000
#>
1/out2m$theta
#> [,1]
#> [1,] 2.7194473
#> [2,] 0.6265788
out1m$theta
#> [,1]
#> [1,] 2.7194473
#> [2,] 0.6265788
####################################################################
################### ACE modelling of twin data #####################
####################################################################
### assume that zygbin gives the zygosity of mono and dizygotic twins
### 0 for mono and 1 for dizygotic twins. We now formulate and AC model
zygbin <- d$zyg=="DZ"
n <- nrow(d)
### random effects for each cluster
des.rv <- cbind(mm,(zygbin==1)*rep(c(1,0)),(zygbin==1)*rep(c(0,1)),1)
### design making parameters half the variance for dizygotic components
pardes <- rbind(c(1,0), c(0.5,0),c(0.5,0), c(0.5,0), c(0,1))
outacem <-Grandom.cif(addm,data=d,cause1=1,cause2=1,
same.cens=TRUE,theta=c(0.35,0.15),
step=1.0,theta.des=pardes,random.design=des.rv)
summary(outacem)
#> Random effect parameters for additive gamma random effects
#>
#> Cause 1 and cause 1
#>
#>
#> Coef. SE z P-val
#> [1,] 0.499 0.0720 6.93 4.21e-12
#> [2,] -0.131 0.0542 -2.41 1.61e-02
#> $estimate
#> Coef. SE z P-val
#> [1,] 0.499 0.0720 6.93 4.21e-12
#> [2,] -0.131 0.0542 -2.41 1.61e-02
#>
#> $h
#> Estimate Std.Err 2.5% 97.5% P-value
#> p1 1.3546 0.1576 1.0458 1.66338 8.131e-18
#> p2 -0.3546 0.1576 -0.6634 -0.04579 2.441e-02
#>