Given p hypotheses H1, ..., Hp all 2^p-1 intersection hypotheses are calculated and adjusted p-values are obtained for Hj is calculated as the max p-value of all intersection hypotheses containing Hj. Example, for p=3, the adjusted p-value for H1 will be obtained from {(H1, H2, H3), (H1,H2), (H1,H3), (H1)}.
Details
The function `test` should be a function `function(object, index,
...)` which as its first argument takes an `estimate` object and and wit
an argument `index` which is a integer vector specifying which
subcomponents of `object` to test. The ellipsis argument can be any other
arguments used in the test function. The function test_wald is an
example of valid test function (which has an additional argument `null` in
reference to the above mentioned ellipsis arguments).
References
Marcus, R; Peritz, E; Gabriel, KR (1976). "On closed testing procedures with special reference to ordered analysis of variance". Biometrika. 63 (3): 655–660.
Examples
m <- lvm()
regression(m, c(y1,y2,y3,y4)~x) <- c(0, 0.25, 0, 0.25)
regression(m, to=endogenous(m), from="u") <- 1
variance(m,endogenous(m)) <- 1
set.seed(1)
d <- sim(m, 200)
l1 <- lm(y1~x,d)
l2 <- lm(y2~x,d)
l3 <- lm(y3~x,d)
l4 <- lm(y4~x,d)
(a <- merge(l1, l2, l3, l4, subset=2))
#> Estimate Std.Err 2.5% 97.5% P-value
#> x -0.04472 0.08929 -0.21971 0.1303 0.61650
#> ───
#> x.1 0.23835 0.09337 0.05536 0.4213 0.01068
#> ───
#> x.2 -0.04900 0.09372 -0.23269 0.1347 0.60111
#> ───
#> x.3 0.22272 0.09225 0.04191 0.4035 0.01577
if (requireNamespace("mets",quietly=TRUE)) {
alpha_zmax(a)
}
#> Estimate P-value Adj.P-value
#> x -0.04471577 0.61649927 0.96215399
#> x.1 0.23835177 0.01068488 0.03639110
#> x.2 -0.04899862 0.60110873 0.95610026
#> x.3 0.22271748 0.01576576 0.05254759
#> attr(,"adjusted.significance.level")
#> [1] 0.01486995
adj <- closed_testing(a)
adj
#> Call: closed_testing(object = a)
#>
#> Estimate adj.p
#> x -0.04471577 0.84238106
#> x.1 0.23835177 0.01928037
#> x.2 -0.04899862 0.84238106
#> x.3 0.22271748 0.01928037
adj$p.value
#> x x.1 x.2 x.3
#> 0.84238106 0.01928037 0.84238106 0.01928037
summary(adj)
#> Call: closed_testing(object = a)
#>
#> ── Adjusted p-values ──
#>
#> Estimate adj.p
#> x -0.04471577 0.84238106
#> x.1 0.23835177 0.01928037
#> x.2 -0.04899862 0.84238106
#> x.3 0.22271748 0.01928037
#>
#> ── Raw p-values for intersection hypotheses ──
#>
#> 1-way intersections:
#> {x} p = 0.6165
#> {x.1} p = 0.0107
#> {x.2} p = 0.6011
#> {x.3} p = 0.0158
#>
#> 2-way intersections:
#> {x, x.1} p = 0.0036
#> {x, x.2} p = 0.8424
#> {x, x.3} p = 0.0086
#> {x.1, x.2} p = 0.0032
#> {x.1, x.3} p = 0.0193
#> {x.2, x.3} p = 0.0046
#>
#> 3-way intersections:
#> {x, x.1, x.2} p = 0.0033
#> {x, x.1, x.3} p = 0.0022
#> {x, x.2, x.3} p = 0.0068
#> {x.1, x.2, x.3} p = 0.0012
#>
#> 4-way intersections:
#> {x, x.1, x.2, x.3} p = 0.0006
#>
