Define covariances between residual terms in a lvm-object.
Usage
# S3 method for class 'lvm'
covariance(object, var1 = NULL, var2 = NULL, constrain = FALSE, pairwise = FALSE, ...) <- valueArguments
- object
lvm-object- ...
Additional arguments to be passed to the low level functions
- var1
Vector of variables names (or formula)
- var2
Vector of variables names (or formula) defining pairwise covariance between
var1andvar2)- constrain
Define non-linear parameter constraints to ensure positive definite structure
- pairwise
If TRUE and
var2is omitted then pairwise correlation is added between all variables invar1- value
List of parameter values or (if
var1is unspecified)
Details
The covariance function is used to specify correlation structure
between residual terms of a latent variable model, using a formula syntax.
For instance, a multivariate model with three response variables,
$$Y_1 = \mu_1 + \epsilon_1$$
$$Y_2 = \mu_2 + \epsilon_2$$
$$Y_3 = \mu_3 + \epsilon_3$$
can be specified as
m <- lvm(~y1+y2+y3)
Pr. default the two variables are assumed to be independent. To add a covariance parameter \(r = cov(\epsilon_1,\epsilon_2)\), we execute the following code
covariance(m) <- y1 ~ f(y2,r)
The special function f and its second argument could be omitted thus
assigning an unique parameter the covariance between y1 and
y2.
Similarily the marginal variance of the two response variables can be fixed to be identical (\(var(Y_i)=v\)) via
covariance(m) <- c(y1,y2,y3) ~ f(v)
To specify a completely unstructured covariance structure, we can call
covariance(m) <- ~y1+y2+y3
All the parameter values of the linear constraints can be given as the right
handside expression of the assigment function covariance<- if the
first (and possibly second) argument is defined as well. E.g:
covariance(m,y1~y1+y2) <- list("a1","b1")
covariance(m,~y2+y3) <- list("a2",2)
Defines
$$var(\epsilon_1) = a1$$
$$var(\epsilon_2) = a2$$
$$var(\epsilon_3) = 2$$
$$cov(\epsilon_1,\epsilon_2) = b1$$
Parameter constraints can be cleared by fixing the relevant parameters to
NA (see also the regression method).
The function covariance (called without additional arguments) can be
used to inspect the covariance constraints of a lvm-object.
