Closed testing procedure
m <- lvm()
regression(m, c(y1,y2,y3,y4,y5,y6,y7)~x) <- c(0,0.25,0,0.25,0.25,0,0)
regression(m, to=endogenous(m), from="u") <- 1
variance(m,endogenous(m)) <- 1
set.seed(2)
d <- sim(m,200)
l1 <- lm(y1~x,d)
l2 <- lm(y2~x,d)
l3 <- lm(y3~x,d)
l4 <- lm(y4~x,d)
l5 <- lm(y5~x,d)
l6 <- lm(y6~x,d)
l7 <- lm(y7~x,d)
(a <- merge(l1,l2,l3,l4,l5,l6,l7,subset=2))
#> Estimate Std.Err 2.5% 97.5% P-value
#> x -0.02201 0.09932 -0.216676 0.1727 8.246e-01
#> ───
#> x.1 0.37231 0.11565 0.145637 0.5990 1.285e-03
#> ───
#> x.2 0.11982 0.11103 -0.097795 0.3374 2.805e-01
#> ───
#> x.3 0.42234 0.09264 0.240763 0.6039 5.143e-06
#> ───
#> x.4 0.29344 0.12136 0.055578 0.5313 1.561e-02
#> ───
#> x.5 0.20565 0.10618 -0.002458 0.4138 5.277e-02
#> ───
#> x.6 0.05240 0.11817 -0.179216 0.2840 6.575e-01
if (requireNamespace("mets",quietly=TRUE)) {
p.correct(a)
}
#> Estimate P-value Adj.P-value
#> x -0.02200928 8.246281e-01 9.999717e-01
#> x.1 0.37230924 1.285283e-03 7.949481e-03
#> x.2 0.11982376 2.805072e-01 7.862887e-01
#> x.3 0.42233507 5.143276e-06 3.258334e-05
#> x.4 0.29343730 1.560907e-02 7.879128e-02
#> x.5 0.20565002 5.276836e-02 2.278589e-01
#> x.6 0.05240058 6.574626e-01 9.974245e-01
#> attr(,"adjusted.significance.level")
#> [1] 0.009449507
as.vector(closed.testing(a))
#> [1] -2.200928e-02 3.723092e-01 1.198238e-01 4.223351e-01 2.934373e-01
#> [6] 2.056500e-01 5.240058e-02 8.246281e-01 1.285283e-03 2.805072e-01
#> [11] 5.143276e-06 1.560907e-02 5.276836e-02 6.574626e-01 8.246281e-01
#> [16] 2.079368e-02 6.158723e-01 1.020005e-04 8.219621e-02 1.907677e-01
#> [21] 7.835113e-01