Prediction in structural equation models
Model object
optional list of (endogenous) variables to condition on
optional subset of variables to predict
If true the residuals are predicted
Parameter vector
Data to use in prediction
Path prediction
If TRUE the conditional mean and variance given covariates are returned (and all other calculations skipped)
Additional arguments to lower level function
predictlvm
m <- lvm(list(c(y1,y2,y3)~u,u~x)); latent(m) <- ~u
d <- sim(m,100)
e <- estimate(m,d)
## Conditional mean (and variance as attribute) given covariates
r <- predict(e)
## Best linear unbiased predictor (BLUP)
r <- predict(e,vars(e))
## Conditional mean of y3 giving covariates and y1,y2
r <- predict(e,y3~y1+y2)
## Conditional mean gives covariates and y1
r <- predict(e,~y1)
## Predicted residuals (conditional on all observed variables)
r <- predict(e,vars(e),residual=TRUE)