Performs Wald or score tests
Arguments
- x
lvmfit-object- k
Number of parameters to test simultaneously. For
equivalencethe number of additional associations to be added instead ofrel.- dir
Direction to do model search. "forward" := add associations/arrows to model/graph (score tests), "backward" := remove associations/arrows from model/graph (wald test)
- type
If equal to 'correlation' only consider score tests for covariance parameters. If equal to 'regression' go through direct effects only (default 'all' is to do both)
- ...
Additional arguments to be passed to the low level functions
Examples
m <- lvm();
regression(m) <- c(y1,y2,y3) ~ eta; latent(m) <- ~eta
regression(m) <- eta ~ x
m0 <- m; regression(m0) <- y2 ~ x
dd <- sim(m0,100)[,manifest(m0)]
e <- estimate(m,dd);
modelsearch(e,messages=0)
#> Score: S P(S>s) Index holm BH
#> 0.04342 0.8349 y3~~x 1 0.8349
#> 0.04342 0.8349 y3~x 1 0.8349
#> 0.04342 0.8349 x~y3 1 0.8349
#> 0.04342 0.8349 y1~~y2 1 0.8349
#> 0.04342 0.8349 y1~y2 1 0.8349
#> 0.04342 0.8349 y2~y1 1 0.8349
#> 0.2946 0.5873 y1~~x 1 0.8349
#> 0.2946 0.5873 y1~x 1 0.8349
#> 0.2946 0.5873 x~y1 1 0.8349
#> 0.2946 0.5873 y2~~y3 1 0.8349
#> 0.2946 0.5873 y2~y3 1 0.8349
#> 0.2946 0.5873 y3~y2 1 0.8349
#> 0.7496 0.3866 y2~~x 1 0.8349
#> 0.7496 0.3866 y2~x 1 0.8349
#> 0.7496 0.3866 x~y2 1 0.8349
#> 0.7496 0.3866 y1~~y3 1 0.8349
#> 0.7496 0.3866 y1~y3 1 0.8349
#> 0.7496 0.3866 y3~y1 1 0.8349
modelsearch(e,messages=0,type="cor")
#> Score: S P(S>s) Index holm BH
#> 0.04342 0.8349 y3~~x 1 0.8349
#> 0.04342 0.8349 y1~~y2 1 0.8349
#> 0.2946 0.5873 y1~~x 1 0.8349
#> 0.2946 0.5873 y2~~y3 1 0.8349
#> 0.7496 0.3866 y2~~x 1 0.8349
#> 0.7496 0.3866 y1~~y3 1 0.8349