Estimate mixture latent variable model
Arguments
- x
List of
lvmobjects. If only a singlelvmobject is given, then ak-mixture of this model is fitted (free parameters varying between mixture components).- data
data.frame- k
Number of mixture components
- control
Optimization parameters (see details) #type Type of EM algorithm (standard, classification, stochastic)
- vcov
of asymptotic covariance matrix (NULL to omit)
- names
If TRUE returns the names of the parameters (for defining starting values)
- ...
Additional arguments parsed to lower-level functions
Details
Estimate parameters in a mixture of latent variable models via the EM algorithm.
The performance of the EM algorithm can be tuned via the control
argument, a list where a subset of the following members can be altered:
- start
Optional starting values
- nstart
Evaluate
nstartdifferent starting values and run the EM-algorithm on the parameters with largest likelihood- tol
Convergence tolerance of the EM-algorithm. The algorithm is stopped when the absolute change in likelihood and parameter (2-norm) between successive iterations is less than
tol- iter.max
Maximum number of iterations of the EM-algorithm
- gamma
Scale-down (i.e. number between 0 and 1) of the step-size of the Newton-Raphson algorithm in the M-step
- trace
Trace information on the EM-algorithm is printed on every
traceth iteration
Note that the algorithm can be aborted any time (C-c) and still be saved (via on.exit call).
Examples
# \donttest{
m0 <- lvm(list(y~x+z,x~z))
distribution(m0,~z) <- binomial.lvm()
d <- sim(m0,2000,p=c("y~z"=2,"y~x"=1),seed=1)
## unmeasured confounder example
m <- baptize(lvm(y~x, x~1));
intercept(m,~x+y) <- NA
if (requireNamespace('mets', quietly=TRUE)) {
set.seed(42)
M <- mixture(m,k=2,data=d,control=list(trace=1,tol=1e-6))
summary(M)
lm(y~x,d)
estimate(M,"y~x")
## True slope := 1
}
#> Squarem-2
#> Residual: 0.02701133 Extrapolation: TRUE Steplength: 1
#> Residual: 0.03759283 Extrapolation: TRUE Steplength: 4
#> Residual: 0.6706137 Extrapolation: TRUE Steplength: 16
#> Residual: 0.0202431 Extrapolation: TRUE Steplength: 2.070702
#> Residual: 0.001280273 Extrapolation: TRUE Steplength: 3.588918
#> Residual: 0.0003418473 Extrapolation: TRUE Steplength: 6.548224
#> Residual: 0.0001613898 Extrapolation: TRUE Steplength: 4.502928
#> Residual: 0.0001075834 Extrapolation: TRUE Steplength: 5.972323
#> Residual: 2.075601e-05 Extrapolation: TRUE Steplength: 3.792669
#> Residual: 2.528599e-06 Extrapolation: TRUE Steplength: 4.761634
#> Estimate Std.Err 2.5% 97.5% P-value
#> [y~x] 1.048 0.03811 0.9737 1.123 1.263e-166
#>
#> Null Hypothesis:
#> [y~x] = 0
# }
