Newton-Raphson method
NR(
start,
objective = NULL,
gradient = NULL,
hessian = NULL,
control,
args = NULL,
...
)
Starting value
Optional objective function (used for selecting step length)
gradient
hessian (if NULL a numerical derivative is used)
optimization arguments (see details)
Optional list of arguments parsed to objective, gradient and hessian
additional arguments parsed to lower level functions
control
should be a list with one or more of the following components:
trace integer for which output is printed each 'trace'th iteration
iter.max number of iterations
stepsize: Step size (default 1)
nstepsize: Increase stepsize every nstepsize iteration (from stepsize to 1)
tol: Convergence criterion (gradient)
epsilon: threshold used in pseudo-inverse
backtrack: In each iteration reduce stepsize unless solution is improved according to criterion (gradient, armijo, curvature, wolfe)
# Objective function with gradient and hessian as attributes
f <- function(z) {
x <- z[1]; y <- z[2]
val <- x^2 + x*y^2 + x + y
structure(val, gradient=c(2*x+y^2+1, 2*y*x+1),
hessian=rbind(c(2,2*y),c(2*y,2*x)))
}
NR(c(0,0),f)
#> $par
#> [1] -0.7324166 0.6825751
#>
#> $iterations
#> [1] 12
#>
#> $method
#> [1] "NR"
#>
#> $gradient
#> [1] 2.451187e-07 7.301897e-07
#>
#> $iH
#> [,1] [,2]
#> [1,] -0.3054540 -0.2849143
#> [2,] -0.2849143 0.4172596
#> attr(,"det")
#> [1] 1.937717
#> attr(,"pseudo")
#> [1] FALSE
#> attr(,"minSV")
#> [1] -2.473621
#>
# Parsing arguments to the function and
g <- function(x,y) (x*y+1)^2
NR(0, gradient=g, args=list(y=2), control=list(trace=1,tol=1e-20))
#>
#> Iter=0 ;
#> p= 0
#> [1] "Numerical Hessian"
#> Iter=1 ;
#> D= 1
#> p= -0.25
#> [1] "Numerical Hessian"
#> Iter=2 ;
#> D= 0.25
#> p= -0.375
#> [1] "Numerical Hessian"
#> Iter=3 ;
#> D= 0.06254
#> p= -0.4375
#> [1] "Numerical Hessian"
#> Iter=4 ;
#> D= 0.01565
#> p= -0.4687
#> [1] "Numerical Hessian"
#> Iter=5 ;
#> D= 0.003918
#> p= -0.4843
#> [1] "Numerical Hessian"
#> Iter=6 ;
#> D= 0.0009826
#> p= -0.4921
#> [1] "Numerical Hessian"
#> Iter=7 ;
#> D= 0.0002472
#> p= -0.496
#> [1] "Numerical Hessian"
#> Iter=8 ;
#> D= 6.259e-05
#> p= -0.498
#> [1] "Numerical Hessian"
#> Iter=9 ;
#> D= 1.604e-05
#> p= -0.499
#> [1] "Numerical Hessian"
#> Iter=10 ;
#> D= 4.208e-06
#> p= -0.4995
#> [1] "Numerical Hessian"
#> Iter=11 ;
#> D= 1.152e-06
#> p= -0.4997
#> [1] "Numerical Hessian"
#> Iter=12 ;
#> D= 3.392e-07
#> p= -0.4998
#> [1] "Numerical Hessian"
#> Iter=13 ;
#> D= 1.115e-07
#> p= -0.4999
#> [1] "Numerical Hessian"
#> Iter=14 ;
#> D= 4.219e-08
#> p= -0.4999
#> [1] "Numerical Hessian"
#> Iter=15 ;
#> D= 1.859e-08
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=16 ;
#> D= 9.411e-09
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=17 ;
#> D= 5.347e-09
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=18 ;
#> D= 3.327e-09
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=19 ;
#> D= 2.221e-09
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=20 ;
#> D= 1.567e-09
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=21 ;
#> D= 1.154e-09
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=22 ;
#> D= 8.799e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=23 ;
#> D= 6.901e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=24 ;
#> D= 5.54e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=25 ;
#> D= 4.535e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=26 ;
#> D= 3.774e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=27 ;
#> D= 3.185e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=28 ;
#> D= 2.721e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=29 ;
#> D= 2.349e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=30 ;
#> D= 2.047e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=31 ;
#> D= 1.799e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=32 ;
#> D= 1.593e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=33 ;
#> D= 1.419e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=34 ;
#> D= 1.272e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=35 ;
#> D= 1.146e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=36 ;
#> D= 1.038e-10
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=37 ;
#> D= 9.444e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=38 ;
#> D= 8.626e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=39 ;
#> D= 7.909e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=40 ;
#> D= 7.276e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=41 ;
#> D= 6.716e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=42 ;
#> D= 6.217e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=43 ;
#> D= 5.77e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=44 ;
#> D= 5.37e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=45 ;
#> D= 5.01e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=46 ;
#> D= 4.684e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=47 ;
#> D= 4.389e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=48 ;
#> D= 4.12e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=49 ;
#> D= 3.876e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=50 ;
#> D= 3.652e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=51 ;
#> D= 3.447e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=52 ;
#> D= 3.258e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=53 ;
#> D= 3.085e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=54 ;
#> D= 2.925e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=55 ;
#> D= 2.776e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=56 ;
#> D= 2.639e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=57 ;
#> D= 2.512e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=58 ;
#> D= 2.393e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=59 ;
#> D= 2.283e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=60 ;
#> D= 2.18e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=61 ;
#> D= 2.084e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=62 ;
#> D= 1.994e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=63 ;
#> D= 1.91e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=64 ;
#> D= 1.83e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=65 ;
#> D= 1.756e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=66 ;
#> D= 1.686e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=67 ;
#> D= 1.62e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=68 ;
#> D= 1.558e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=69 ;
#> D= 1.5e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=70 ;
#> D= 1.444e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=71 ;
#> D= 1.392e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=72 ;
#> D= 1.342e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=73 ;
#> D= 1.295e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=74 ;
#> D= 1.251e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=75 ;
#> D= 1.208e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=76 ;
#> D= 1.168e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=77 ;
#> D= 1.13e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=78 ;
#> D= 1.093e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=79 ;
#> D= 1.059e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=80 ;
#> D= 1.026e-11
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=81 ;
#> D= 9.939e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=82 ;
#> D= 9.638e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=83 ;
#> D= 9.35e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=84 ;
#> D= 9.075e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=85 ;
#> D= 8.811e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=86 ;
#> D= 8.559e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=87 ;
#> D= 8.317e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=88 ;
#> D= 8.086e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=89 ;
#> D= 7.864e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=90 ;
#> D= 7.651e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=91 ;
#> D= 7.446e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=92 ;
#> D= 7.25e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=93 ;
#> D= 7.061e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=94 ;
#> D= 6.879e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=95 ;
#> D= 6.705e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=96 ;
#> D= 6.537e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=97 ;
#> D= 6.375e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=98 ;
#> D= 6.219e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=99 ;
#> D= 6.068e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=100 ;
#> D= 5.923e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=101 ;
#> D= 5.783e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=102 ;
#> D= 5.648e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=103 ;
#> D= 5.518e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=104 ;
#> D= 5.392e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=105 ;
#> D= 5.27e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=106 ;
#> D= 5.153e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=107 ;
#> D= 5.039e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=108 ;
#> D= 4.929e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=109 ;
#> D= 4.822e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=110 ;
#> D= 4.719e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=111 ;
#> D= 4.62e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=112 ;
#> D= 4.523e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=113 ;
#> D= 4.429e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=114 ;
#> D= 4.338e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=115 ;
#> D= 4.25e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=116 ;
#> D= 4.165e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=117 ;
#> D= 4.082e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=118 ;
#> D= 4.002e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=119 ;
#> D= 3.923e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=120 ;
#> D= 3.848e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=121 ;
#> D= 3.774e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=122 ;
#> D= 3.702e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=123 ;
#> D= 3.633e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=124 ;
#> D= 3.565e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=125 ;
#> D= 3.499e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=126 ;
#> D= 3.435e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=127 ;
#> D= 3.373e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=128 ;
#> D= 3.313e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=129 ;
#> D= 3.254e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=130 ;
#> D= 3.196e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=131 ;
#> D= 3.14e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=132 ;
#> D= 3.086e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=133 ;
#> D= 3.033e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=134 ;
#> D= 2.981e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=135 ;
#> D= 2.931e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=136 ;
#> D= 2.882e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=137 ;
#> D= 2.834e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=138 ;
#> D= 2.787e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=139 ;
#> D= 2.742e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=140 ;
#> D= 2.697e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=141 ;
#> D= 2.654e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=142 ;
#> D= 2.611e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=143 ;
#> D= 2.57e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=144 ;
#> D= 2.53e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=145 ;
#> D= 2.49e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=146 ;
#> D= 2.452e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=147 ;
#> D= 2.414e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=148 ;
#> D= 2.377e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=149 ;
#> D= 2.341e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=150 ;
#> D= 2.306e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=151 ;
#> D= 2.272e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=152 ;
#> D= 2.238e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=153 ;
#> D= 2.205e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=154 ;
#> D= 2.173e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=155 ;
#> D= 2.142e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=156 ;
#> D= 2.111e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=157 ;
#> D= 2.081e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=158 ;
#> D= 2.051e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=159 ;
#> D= 2.022e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=160 ;
#> D= 1.994e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=161 ;
#> D= 1.966e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=162 ;
#> D= 1.939e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=163 ;
#> D= 1.913e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=164 ;
#> D= 1.887e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=165 ;
#> D= 1.861e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=166 ;
#> D= 1.836e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=167 ;
#> D= 1.812e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=168 ;
#> D= 1.788e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=169 ;
#> D= 1.764e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=170 ;
#> D= 1.741e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=171 ;
#> D= 1.719e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=172 ;
#> D= 1.697e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=173 ;
#> D= 1.675e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=174 ;
#> D= 1.653e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=175 ;
#> D= 1.633e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=176 ;
#> D= 1.612e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=177 ;
#> D= 1.592e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=178 ;
#> D= 1.572e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=179 ;
#> D= 1.553e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=180 ;
#> D= 1.534e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=181 ;
#> D= 1.515e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=182 ;
#> D= 1.497e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=183 ;
#> D= 1.479e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=184 ;
#> D= 1.461e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=185 ;
#> D= 1.443e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=186 ;
#> D= 1.426e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=187 ;
#> D= 1.41e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=188 ;
#> D= 1.393e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=189 ;
#> D= 1.377e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=190 ;
#> D= 1.361e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=191 ;
#> D= 1.345e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=192 ;
#> D= 1.33e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=193 ;
#> D= 1.315e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=194 ;
#> D= 1.3e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=195 ;
#> D= 1.285e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=196 ;
#> D= 1.271e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=197 ;
#> D= 1.257e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=198 ;
#> D= 1.243e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=199 ;
#> D= 1.229e-12
#> p= -0.5
#> [1] "Numerical Hessian"
#> Iter=200 ;
#> D= 1.216e-12
#> p= -0.5
#> $par
#> [1] -0.4999995
#>
#> $iterations
#> [1] 200
#>
#> $method
#> [1] "NR"
#>
#> $gradient
#> [1] 1.215822e-12
#>
#> $iH
#> [,1]
#> [1,] -2472.735
#> attr(,"det")
#> [,1]
#> [1,] -0.0004044106
#>