Extract i.i.d. decomposition (influence function) from model object

IC(x,...)

# S3 method for default
IC(x, bread, id=NULL, folds=0, maxsize=(folds>0)*1e6,...)

Arguments

x

model object

...

additional arguments

id

(optional) id/cluster variable

bread

(optional) Inverse of derivative of mean score function

folds

(optional) Calculate aggregated iid decomposition (0:=disabled)

maxsize

(optional) Data is split in groups of size up to 'maxsize' (0:=disabled)

Examples

m <- lvm(y~x+z)
distribution(m, ~y+z) <- binomial.lvm("logit")
d <- sim(m,1e3)
g <- glm(y~x+z,data=d,family=binomial)
var_ic(IC(g))
#>               (Intercept)            x            z
#> (Intercept)  0.0096004858 0.0002383694 -0.009547186
#> x            0.0002383694 0.0068794652  0.001307109
#> z           -0.0095471859 0.0013071090  0.020175485